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ABSTRACT 

Biobased surfactants, which are biochemicals derived from biological resources via 

various methods like enzymes and microbial fermentation, can achieve similar application 

functionality to petroleum-based surfactants. The conventional surfactants could face challenges 

in terms of limited fossil fuel availability, harsh processing conditions, low biodegradability and 

high aquatic toxicity. Biobased surfactants, on the other hand, can address some of these 

challenges; however, they also have their own challenges, for example, lower yield and 

production rate compared with conventional surfactant production method.  

The overall goal of this work was to investigate the synthesis of specific biobased 

surfactants and evaluate their functionalities for potential food applications. This was 

accomplished by 1) optimizing the synthesis condition for glucose-fatty acid esters and evaluate 

their emulsification properties, 2) exploring the antimicrobial performance of some biobased 

surfactants and elucidate their mechanisms, and 3) exploring the emulsion-stabilizing effect of 

microbial biosurfactants and the emulsions’ antimicrobial properties. 

The method explored to synthesize glucose fatty acid esters biobased surfactants using 

lipase with the substrates of glucose of fatty acids. The emulsifying and antimicrobial properties 

of the glucose-fatty acid esters and two microbial biosurfactants - surfactin and fatty acyl 

glutamic acid (FA-glu) were also investigated. It was found that the conversion percentages of 

fatty acids and rates of reaction depended on the reaction substrate concentration the reaction 

medium. The glucose-fatty acid esters demonstrated some emulsification capabilities, but weaker 

than commercial sucrose esters compared. One of the glucose esters, glucose laurate inhibited 

growth of E.coli O157:H7, Listeria monocytogenes and Salmonella Enteritidis during 24 h at the 

concentration of 6.5 mg/mL. The microbial biosurfactant FA-glu inhibited pathogens from 
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growing at the concentration of 25 mg/mL; the mechanism of inhibition was the disruption of 

bacterial cell membrane by FA-glu. 

Surfactin, FA-glu and two other common food emulsifiers (lecithin and Tween 80) were 

also studied for their ability to stabilized nano- and coarse emulsions containing cinnamaldehyde 

(CM) and the emulsions’ inhibition effect on pathogens. Although the minimum inhibitory 

concentrations were not reduced compared with non-emulsified CM, the dispersion of the CM in 

the emulsion strengthened the inhibition of pathogens at sub-minimum inhibitory concentrations. 

There was no definite relationship between the emulsion droplet size and antimicrobial effect.  

In summary, our study provided important information on some biobased surfactants for 

their use in food and agriculture industries as the potential “clean label” emulsion and/or 

antimicrobial ingredients. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Research Premise: 

Biobased surfactants are amphiphilic molecules that are produced from biological or 

renewable agricultural sources (Salimon, Salih, & Yousif, 2012); many studies have used enzymes 

or microbial fermentation to produce biobased surfactants. Biobased surfactants, compared with 

traditional petroleum based surfactants, possess enhanced biodegradability, and the methods to 

produce them are more sustainable. Based on structural characteristics of biobased surfactants, 

there are several types, such as glycolipids, lipopeptides and phospholipids. Sugar-fatty acid esters 

are a type of glycolipids that can be enzymatically synthesized by lipase, which catalyzes the 

formation of ester bond. Many researches have used disaccharides and free fatty acids to synthesize 

the esters via enzymes, but not many studies have used monosaccharide (glucose) to synthesize 

sugar-fatty acid ester and study their functionalities. Aside from being good emulsifiers, some 

sugar-fatty acid esters have demonstrated antimicrobial properties; however, the antimicrobial 

properties for glucose esters have also not been studied. 

Glycolipid and lipopeptide types of biobased surfactants can be also produced from 

microbial fermentation with similar functionalities as emulsifiers and antimicrobial agents. Thus, 

they have potential applications in industries such as soil bioremediation, detergent, and pathogen 

control and disinfectants. Surfactin and its variant fatty acyl glutamic acid (FA-glu), which are 

lipopeptide biosurfactants produced from fermentation by Bacillus subtilis, are shown to have 

good surface activity. Surfactin has been studied extensively for its varied capability, for example, 

soil bioremediation (Bustamante, Duran, & Diez, 2012), biofilm inhibition (Rivardo, Turner, 

Allegrone, Ceri, & Martinotti, 2009; Sriram, Kalishwaralal, Deepak, Gracerosepat, Srisakthi, & 

Gurunathan, 2011), and antimicrobial activity (Zhao, Shao, Jiang, Shi, Li, Huang, et al., 2017). 
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Nevertheless, surfactin has not been reported in potential food systems for emulsion stabilizing 

effect, and their influence on pathogen in food system was not studied. FA-glu, a variant of 

surfactin with only one amino acid as polar head with enhanced aqueous solubility (Reznik, 

Vishwanath, Pynn, Sitnik, Todd, Wu, et al., 2010), has not been studied for emulsion formation 

and antimicrobial effects. Exploring these two biosurfactants functionalities as emulsifiers and 

antimicrobial agents will provide new information for food and agricultural industries, as these 

can be viewed as “clean label” ingredients. If the biosurfactants possess both emulsifiers and 

antimicrobial effects, their applicability in food and related applications will be enhanced.  

1.2 Overall study goal and hypotheses  

The overall goal of this work was to investigate the synthesis of specific biobased 

surfactants and evaluate their functionalities for potential food applications.  This was 

accomplished in a series of studies to achieve three specific objectives, namely, 1) to optimize the 

synthesis condition for glucose-fatty acid esters and evaluate their emulsification properties, 2) to 

explore the antimicrobial performance of some biobased surfactants and elucidate their 

mechanisms, and 3) to explore the emulsion-stabilizing effect of microbial biosurfactants and the 

emulsions’ antimicrobial properties. For Objective 1, the optimization of synthesis condition in 

terms of reactants’ ratio, the purification methods, the confirmation of the products and the 

stabilizing ability of oil-in-water emulsion were studied. The hypothesis tested was that the glucose 

and free fatty acid can exclusively form monoesters in the mixed organic solvent system with 

emulsion stabilizing effects, and their yields is affected by substrate ratios. For Objective 2, the 

antimicrobial inhibition effect was studied and compared for different biobased surfactants, 

including synthesized glucose esters, commercial sucrose esters and microbial biosurfactants. The 

mechanisms of the antimicrobial behavior for one of the surfactants was also investigated using 
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artificial cell membrane components. The hypothesis was that the biobased surfactants tested 

demonstrate antimicrobial behavior, by disrupting and solubilizing of bacterial cell membrane. For 

Objective 3, the nanoemulsions/emulsions stabilized by two microbial biosurfactants were created 

and studied for their abilities to improve the antimicrobial effect of cinnamaldehyde against two 

pathogens in broth media. The hypothesis was that the emulsions stabilized by the biosurfactants 

containing cinnamaldehyde can improve the antimicrobial effect of non-emulsified 

cinnamaldehyde. The nanoemulsions would have better antimicrobial efficacy compared to free 

cinnamaldehyde and coarse emulsions. 

1.3 Significance 

As consumers are paying more attention to “clean-label” food products, food companies 

are eagerly looking for natural, biobased, and sustainably manufactured food ingredients. Biobased 

surfactants can be produced naturally either by enzymes or bacterial fermentation. Also, the 

biobased surfactant production can add value to the underutilized materials such as waste biomass 

and coproducts, as microbes can utilize them as growth medium. Therefore, it is important to 

optimize synthesis conditions for biobased surfactants and explore their functionalities as food 

emulsifiers and antimicrobial agents. Our study will provide important information on some 

biobased surfactants for use in food and agriculture industries as the potential “clean label” 

ingredients.  

1.4 Dissertation organization 

The dissertation is organized in 6 chapters. Chapter 1 describes the goals and significance 

of the research topics. Chapter 2 provides the background information on biobased surfactants 

synthesis using enzymes, their applications and functionalities as emulsifiers and antimicrobial 
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agents. Chapters 3, 4, and 5 present experimental research with pertinent results and discussion. 

These Chapters are presented as manuscripts that have been written, submitted or accepted as 

journal articles. The manuscript formats followed are for Food Chemistry, Journal of Agriculture 

and Food Chemistry, and Food Chemistry journals respectively. Finally, the Chapter 6 provides a 

general research conclusions and direction to possible future studies.  
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CHAPTER 2. LITERATURE REVIEW: BIOBASED SURFACTANTS PRODUCTION 

AND THEIR USE AS EMULSIFIERS AND ANTIMICROBIAL AGENTS  

2.1 Abstract 

This literature review provides the information on biobased surfactants that can be 

produced by enzymes and microbial fermentation, and their characteristics and functionality. The 

synthesis characteristics of lipase-catalyzed sugar-fatty acid esters, regarding the regional 

esterification selectivity by lipase and various reaction systems are described in details. The 

biosurfactants produced via microbial fermentation are summarized regarding their applications 

and limitations. Finally, the antimicrobial performance of both microbial based and lipase 

synthesized biosurfactants and their mechanisms are discussed. The literature review reveals 

research gaps in producing biobased surfactants (yield improvement), and characterizing them 

for food related applications, namely, antimicrobial mechanisms against food-borne pathogens.  

This dissertation research aims to fulfil those research gaps. 

2.2 Surfactants, biobased surfactants, their market value and applications  

Surfactants are amphiphilic molecules having both hydrophilic and hydrophobic moieties 

that can adsorb onto the interface between different phases. Because of this characteristic, 

surfactants show various surface-active properties, including reducing interfacial tension, which 

enables them for a wide-range of uses in food, pharmaceutical, detergent, cosmetic, oil recovery, 

and soil bioremediation. Based on the charge on hydrophilic moieties, surfactants can be 

classified into four groups: anionic with negatively charged head group, cationic with positively 

charged head group, zwitterionic having both anionic and cationic center, and nonionic. Based 

on their adsorption properties, anionic surfactants are the most important group of surfactants 
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used in cleaning and detergent industry (Steber, 2007). Cationic surfactants are important in 

formulating fabric softeners and hair-conditioning products as they have great potency against 

microorganisms (Cross, 1994). Zwitterionic and nonionic surfactant also have various 

application in detergent products. Most of the surfactants used in various industry are chemically 

synthesized from petroleum-based resources.  The petroleum-derived surfactants may not be 

readily biodegradable and possess toxicity to the environment. Biobased surfactants, unlike 

chemically synthesized surfactants, are derived from renewable agricultural or biological 

resources (Salimon, Salih, & Yousif, 2012), which can be produced by chemical or enzymatic 

catalyzed reactions or microbial fermentation using biological feedstocks (Hayes, 2009). 

Because of the nature of the biosurfactants, they are known to have enhanced biodegradability, 

safety, and sustainability (Hayes, 2009) with the production process yielding less carbon dioxide 

(Patel, 2003). Most biosurfactants are nonionic, because biological feedstocks provide non-

charged groups for the bio-synthesized surfactants (Hayes, 2009).  

         Aside from being environmentally friendly process for biobased surfactants, many other 

factors contribute to the need and rationale to produce biobased surfactants, such as the prices 

and supply of petroleum crude oil and oleochemical feedstock (Hayes, 2009). The price for 

petroleum crude oil has fluctuated since 1974 (Macrotrends, 2017), and the price of 

oleochemical feedstock, such as palm oil and other vegetable oils, are closely linked with the 

petroleum products (ICIS chemical business, 2012). The increased demand for biofuels also led 

to the higher production for palm, rapeseed and soybean oils (Unnithan, 2015), which also has 

caused problems of deforestation and animal habitat loss (Gao, 2011). To meet the market 

demand, genetically engineered crops are expected to increase the yield of oil (Gressel, 2008). 

Although these may positively or negatively affect the biosurfactant industry, the global 
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biosurfactant market revenue was at 1.76 billion dollars in 2015 (Global market insights, 2017) 

and is expected to grow fast and the revenues may reach $2.3 billion by year 2020 (Grand view 

research, Inc, 2015). Another driving force for biosurfactants growth is the increased need for 

non-ionic surfactant (Patel, 2003) for their synergistic effect with ionic surfactants in 

concentrated detergent products. The advantages of combining non-ionic and ionic surfactants 

include reduce critical micelles concentration (Jin, Garamus, Liu, Xiao, Eckerlebe, Willumeit-

Römer, et al., 2016; Z.-G. Zhang & Yin, 2005) and avoid precipitation (Jin, et al., 2016). 

Biobased surfactants mostly used in are rhamnolipids, sophorolipids, methyl ester 

sulfonates, alkyl polyglycosides, sorbitan esters, sucrose esters etc. in various industries, such as, 

household detergents, personal care, industrial cleaners, food processing, oilfield chemicals, 

agricultural chemicals, textiles etc. These industries totaled 1.6 billion revenue in 2013 (Global 

market insights, 2017). Some other potential applications are also described in section 2.4.  

2.3 Technologies for biobased surfactants production  

Biobased surfactant can be produced chemically, enzymatically or via microbial 

fermentation from renewable agricultural and biological sources (Hayes, 2009). The following 

sections will describe some production methods for biobased surfactants, but will mainly focus 

on enzyme and fermentation- based technologies.  

2.3.1 Enzymes for synthesis of biobased surfactants 

The enzymes that are used for biobased surfactants synthesis are lipase, glucosidase, 

proteinase and phospholipases. Lipase catalyzes the ester bond formation between hydroxyl 

group and carboxylic acid group. The acyl donors (hydroxyl groups) used were usually polyols 

(Janssen, Lefferts, & Van't Riet, 1990; D. Patil, De Leonardis, & Nag, 2011) or carbohydrate 
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(Degn & Zimmermann, 2001) and the acyl acceptors (carboxylic acid) were usually fatty acid 

esters (D. Patil, De Leonardis, & Nag, 2011) or free fatty acid (Ren & Lamsal, 2017). 

Glucosidase can catalyze acetal bond formation between saccharides and fatty alcohols (Van 

Rantwijk, Woudenberg-van Oosterom, & Sheldon, 1999). Proteinase can also catalyze 

esterification/ transesterification reactions to form ester bond (De Medeiros, Souto, Fagundes, & 

Costa, 2011) or amide bond (Clapés, Morán, & Infante, 1999)  depending on the substrate. 

Phospholipases are enzymes that can hydrolyze at different phospholipid sites, thus, producing a 

wide range of products, including fatty acids, lysophospholipids, diacylglycerides, and phosphate 

esters; some of these products can be used as emulsifiers (Xie & Dunford, 2017).  

2.3.2 Synthesis of sugar-fatty acid by lipase from Candida antarctica 

2.3.2.1 Characteristics of lipase from Candida antarctica  

  Lipases are one of the most studied enzymes used for synthesis of biobased surfactants for  

their ability to catalyze a wide range of substrates, including naturally occurring (fats and oil) or 

synthetic (alkanolamines) ones (Zaks & Klibanov, 1984, 1985). Lipase is produced by many 

microorganisms, such as Bacillus subtilis, Bacillus licheniformis, Streptomyces sp., Rhizomucor 

miehei, Candida Antarctica, Candida clindracea, Chromobacterium viscous, etc. (Kennedy, 

Kumar, Panesar, Marwaha, Goyal, Parmar, et al., 2006). Among all the lipases from different 

sources, lipase B, denoted as CALB, were used in various studies and were shown to be very 

effective and highly robust in different systems with specific regio- and enantio- selectivity 

(Anderson, Larsson, & Kirk, 1998). CALB has a molecular weight of 33 kDa and a pI of 6.0; it is 

very active on simple esters, amides, and thiols, rather than larger triglycerides (Rogalska, Cudrey, 

Ferrato, & Verger, 1993). Free lipase B is a very robust protein, stable in the range of pH 3.5-9.5, 

with the denaturation temperature varying between 50 ℃ and 60 ℃ (Anderson, Larsson, & Kirk, 
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1998).  After immobilization, it is more thermostable and can be used in a continuous operation at 

60-80℃ (Arroyo & Sinisterra, 1994; Heldt-Hansen, Ishii, Patkar, Hansen, & Eigtved, 1989). The 

structure of lipase B has been reported mostly made of parallel beta-sheets surrounded by alpha-

helices (Uppenberg, Hansen, Patkar, & Jones, 1994). The active serine residue is at the bottom of 

a narrow and deep pocket which is 10 Å × 4 Å wide and 12 Å deep. It is the physical restriction 

and the hydrophobic nature of the pocket that determines the substrate selectivity. The X-ray 

crystallography demonstrated that there are two channels in the active sites, responsible for the 

acyl- and alcohol- moieties. The acyl- channel is larger than the latter one, therefore, the lipase B 

is expected to have a broader selectivity for acyl donors than acyl acceptors. 

2.3.2.2 Regioselectivity of the lipase for synthesis of sugar fatty acid esters 

The selectively of acylation reaction between acyl donor and acceptor can be affected by 

the substrate ratio, structure, and solvent hydrophobicity. For esterification of carbohydrate or 

polyol, the acylation usually occurs at the primary hydroxyl group. For example, acylation usually 

happened in the hydroxyl group in the 6th carbon of monosaccharides; Tsavas, Polydorou, Faflia, 

Voutsas, Tassios, Flores, et al. (2002) used lauric acid, vinyl ester and glucose to synthesize 6-O-

lauroyl-glucose using lipase from Thermomyces lanuginosus. The purity of the compound was 

99% and the structure was confirmed by HPLC and 1H NMR. Ljunger, Adlercreutz, & Mattiasson 

(1994) used lipase from Candida antarctica for synthesis of glucose esters and found that a 

monoester was exclusively synthesized when the concentration of octanoic acid and glucose molar 

ratio was 10:1, whereas, at lower or higher concentrations of octanoic acid, reaction was slower 

and/or produced diesters. Ducret, Giroux, Trani, & Lortie (1995) used oleic acid and sorbitol or 

sugars to synthesize esters and reported a preference by lipase to primary hydroxyl group, and the 

monoesters contents were over 70%. 
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For esterification of disaccharides, sucrose, maltose, trehalose, and lactose have been used 

to obtain diesters. The regioselectivity varied depending on substrate and solvents types. Pedersen, 

Wimmer, Emmersen, Degn, & Pedersen (2002) tested the effect of fatty acid chain length on 

regioselectivity and reported sucrose monoesters (6’-O-acyl or 6-O-acyl) with butanoic acid (C-

4:0) and decanoic acid (C-10:0); however, diester (6,6’-O-acyl) was formed only with C-4:0 in the 

solvent mix of t-butanol and pyridine. It is possible that increased steric hindrance caused by longer 

chain fatty acid or the form of diesters in the enzyme active pocket limited the acylation reaction. 

Woudenberg‐van Oosterom, van Rantwijk, & Sheldon (1996) found that the 6 and 6’ position of 

trehalose can be equally acylated with ethyl butanoate when using t- butanol as solvents. When 

sucrose, isomaltulose and maltulose were used, all of them formed diesters, whereas maltose only 

had monoester (6’-O-acyl). In both of these studies, maltose produced only monoesters and lactose 

esters were either not observed or low. They proposed the high crystal lattice energy as the possible 

reason leading to lower solubility. Rich, Bedell, & Dordick (1995)  studied the regioselectivity of 

sucrose acylation in solvents with different hydrophobicity and suggested solvents have a role in 

accessibility of sugar molecule to the enzyme active sites that changes the acylation 

microenvironment. For example, if solvent is more hydrophilic, the glucose stabilizes in reaction 

medium and increases the 1’ OH acylation; the addition of hydrophobic solvent would “push” the 

whole sucrose molecule into the binding site, thus, reducing the reactivity of 1’-OH, but increasing 

the reactivity of 6-OH.  

2.3.2.3 Reaction systems and challenges for the synthesis of sugar-fatty esters using Candida 

Antarctica lipase 

One of the most difficult challenges for sugar fatty acid esters synthesis is choosing a 

proper solvent that solubilizes both of the substrates (sugars and fatty acids). Laane, Boeren, 
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Vos, & Veeger (1987) summarized multiple studies and proposed a generalization that synthesis 

biocatalysis would have low activity in solvent with a partition coefficient (log [P]) less than 2, 

moderate in a solvent with log [P] between 2 and 4, and high in polar solvents with a log [P] > 4. 

The polar solvents were not suggested as good choices because they are able to strip water 

molecules from the enzyme active site. However, carbohydrates usually have very low solubility 

in non-polar solvents, so, simply choosing a solvent in which lipases have higher activity was not 

proper. Because of this, other reaction systems, such as mixed solvent systems, solvent free 

systems, and ionic solvent systems, need to be explored to address low-solubility of 

carbohydrates, as discussed below: 

Mixed solvent systems 

Mixed solvent systems comprise of combination of different organic solvents; however 

enzyme activities in such systems need to be evaluated. Degn & Zimmermann (2001) evaluated 

solubilities in a variety of combined solvent systems. They reported good enzyme activity and 

sugar solubility can be achieved in two mixed solvent systems: tert-butanol and DMSO mixture, 

and tert-pentanol and pyridine mixture. DMSO and pyridine are good solvents for glucose but 

lipase exhibited no activity in them. Tert-butanol and pentanol, although had lower solubility for 

water, were able to retain the highest enzyme activity. Therefore, combination of t-butanol/t-

pentanol and DMSO/pyridine as mixed solvent systems were suggested for sugar esters’ synthesis. 

(Ferrer, Cruces, Bernabe, Ballesteros, & Plou, 1999; Ferrer, Cruces, Plou, Bernabe, & Ballesteros, 

2000; Pedersen, Wimmer, Emmersen, Degn, & Pedersen, 2002; Ren & Lamsal, 2017). The 

conversion of sucrose achieved during the synthesis of sugar esters in these systems were over 

70% (Ferrer, Cruces, Bernabe, Ballesteros, & Plou, 1999; Ferrer, Cruces, Plou, Bernabe, & 

Ballesteros, 2000 or even 90% (Ren & Lamsal, 2017). However, the ratio of the solvents will affect 
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the product varieties as diesters were formed when DMSO content varied (Ferrer, Cruces, Bernabe, 

Ballesteros, & Plou, 1999). 

Solvent-free systems 

In view of the limitations in choosing best solvent system, use of the solvent free system 

under reduced pressure has also been studied. In solvent-free system, it is ultimately important to 

remove water or alcohol by non-reactive chemicals or reduced pressure. Kim, Han, Yoon, & 

Rhee (1998) studied the effect of a series salt hydrate pairs on the yield of sucrose caprite and 

found barium hydroxide 8H2O resulted in highest yield (25.3%) and could effectively control the 

water activity (aw, 0.44). Proper aw could make enzyme molecules more flexible than in 

anhydrous conditions they have better access to bigger molecules such as disaccharides 

(Adlercreutz, 1992; Valivety, Halling, & Macrae, 1992). However, excessively high water 

activity would also cause hydrolysis. Another means to enhance miscibility of sugar with molten 

fatty acid were employing easily accessible sugar acetals and undergoing deacetalisation after 

esterification, which can avoid the diester synthesis (Sarney & Vulfson, 2001). Fig 2.1 

demonstrates the acetonation process and removal of the modifying part: by preparation of the 

lactose acetals, lactose monoester was successfully synthesized. Fregapane, Sarney, & Vulfson 

(1991) used monosaccharide acetals and fatty acid methyl ester to make sugar fatty acid esters by 

lipase from Pseudomonas sp and Chromobacterium viscosum, with 50-90% product recovery 

reported under optimal conditions. Adelhorst, Bjokling, Godtfredsen, & Kirk (1990) used ethyl 

glucopyranosides and achieved 40-80% yield. Ward, Fang, & Li (1997) used xylose acetals to 

synthesize xylose 5-arachidonate and obtained 83-83% conversion rate. In comparison with 

mixed solvent systems, the yields were lower with disaccharides, but similar with 

monosaccharides; however, the extra step to pre-modify the carbohydrate to improve the 
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miscibility would add to the costs. The advantage of solvent-free systems is that some 

disaccharides, such as the lactose can be successfully synthesized to monoester.  

 

Figure 2.1 Principle of sugar modification followed by enzymatic esterification and removal of 

modifying groups in synthesis of sugar esters exemplified by xylose (Sarney & Vulfson, 2001) 

 

Ionic solvent system 

The use of ionic liquids (IL), which are organic liquid salts, has also been studied for 

biocatalysis of lipase with several advantages: low vapor pressure and many tunable properties 

such as solvent polarity, hydrophobicity and solvent miscibility. These properties can be modified 

by changing the cations and anions of the salts.  

Lipase from Candida antarctica was shown to retain its activity in some ILs. However, 

there is not a standard to tell the efficacy of activation of lipase and the results were related to the 

purity of the IL (S. H. Lee, Ha, Lee, & Koo, 2006; van Rantwijk, Lau, & Sheldon, 2003). Table 
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2.1 lists the ionic liquids that have been used for the esterification of sugar fatty acid esters, 

conversion percentage and the enzyme reusability. 

Table 2.1 Ionic liquid used in sugar-fatty acid esters synthesis 

Substrates Ionic liquid 

Sugar 

conversion 

Product 

yield 

Enzyme 

stability Reference 

glucose and vinyl 

acetate 

[EMIM][BF4] 50%     

Park & 

Kazlauskas, 

2001 

[MOEMIN][ BF4] 99%   

[PMIM][ BF4] 28%   

[BMIM][ BF4] 78%   

[sBMIM][ BF4] 90%   

[BMIM][PF6] 29%   

[BPy][BF4] 42%   

[PPy][BF4] 44%     

supersaturated glucose 

IL solution and vinyl 

laurate [BMIM][TfO] 97%     

 S. H. Lee, 

Dang, Ha, 

Chang, & 

Koo, 2008 crystalline glucose [BMIM][TfO] 8%     

gluose and palmitic acid [BMIM][PF6]   

0.205 

mmol g-1 

still kept 

activity at 

the 10th 

run 

Findrik, 

Megyeri, 

Gubicza, 

Bélafi-Bakó, 

Nemestóthy, 

& Sudar, 

2016 

glucose and lauric acid 

vinyl ester 

t-butanol (40%) and 

[BMIM][BF4](60%) 

(v/v) 62%     

 Ganske & 

Bornscheuer, 

2005 

 

t-butanol (40%) and 

[BMIM][PF6](60%) 

(v/v) 62%   

glucose and palmitic 

acid 

t-butanol (40%) and 

[BMIM][BF4](60%)(v/v) 45%   

  

t-butanol (40%) and 

[BMIM][PF6](60%) 

(v/v) 45%     

glucose and vinyl 

laurate 

[BMIM][TfO] and 

[BMIM][Tf2N] (1:1 v/v) 70-90%   

still kept 

activity at 

the 10th 

run 

Mai, Ahn, 

Bae, Shin, 

Morya, & 

Koo, 2014 
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From the studies listed, it can be seen that that the BF4
- and PF6

- were the most frequently 

used anions in ILs. According to a review (Yang & Huang, 2012), the glucose solubility follows 

dca>TfO>BF4>PF6>Tf2N, for ILs containing BF4
- and PF6

-; the cations also influence the 

solubility too, with the trend [MOMMIM]>[MOEMIM]>[EOEMIM]>[BMIM]. However, like 

organic solvent system, solvents that have good solubility for glucose usually cannot activate 

enzyme, such as [BMIM][dca] (Liu, Janssen, van Rantwijk, & Sheldon, 2005). Despite these 

reports for the synthesis of sugar-esters, the use of ILs is still in early stage of research; the stability 

of lipase in the ILs, the interaction of ionic liquid with enzyme structure, and functionality need to 

be explored further. The difficulties in these studies include complexed steps to synthesize and 

purify the ionic liquid themselves and purification of the final esters. 

2.3.3 Chemical synthesis of biobased surfactants 

Biobased surfactants, for example, esters, can also be synthesized chemically using acid 

or alkaline catalysts. Monoglycerides, one of the most commonly used emulsifiers in food 

industry, can be synthesized either by direct esterification of glycerol with fatty acids or by 

transesterification of glycerol with fatty acid methyl esters (Rarokar, Menghani, Kerzare, & 

Khedekar, 2017). The former process requires an acid catalyst (Sun, Hu, An, Zhang, Guo, Song, 

et al., 2017) and the latter one needs a strong base (Sonntag, 1982). Sucrose esters, as discussed 

above, can be prepared by base-catalyzed esterification with fatty acid esters (Cruces, Plou, 

Ferrer, Bernabé, & Ballesteros, 2001), however, the process involves organic solvents 

dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) due the immiscibility of the 

reactants. Another type of biobased surfactants, alkyl glucosides, which are known as nonionic 

surfactants, can be synthesized from carbohydrate and aliphatic alcohols with the aid of acidic 

catalyst. Nowicki, Woch, Mościpan, & Nowakowska-Bogdan (2017) synthesized a series of 
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alkyl glucosides from glucose and aliphatic alcohols using Fischer glycosylation in reverse 

micelle system. The catalyst, dodecylbenzenesulfonic acid, not only was the catalyst, but also a 

surfactant for the microemulsion that trapped the reaction byproduct (water) into micelles to 

improve glucose conversion.  

2.4 Microbial biosurfactants and their applications 

Many biosurfactants can be produced by microbial fermentation using cheap feedstocks 

medium, in which carbohydrate and lipids can be provided in the media. Some carbohydrates 

that were successfully utilized as energy sources were soy molasses (Solaiman, Ashby, 

Zerkowski, & Foglia, 2007), sugar cane molasses (Minucelli, Ribeiro-Viana, Borsato, Andrade, 

Cely, de Oliveira, et al., 2017), starch, date molasses (Al-Wahaibi, Joshi, Al-Bahry, Elshafie, Al-

Bemani, & Shibulal, 2014), and fibrous feedstocks after pre-treatment such as switchgrass, 

alfalfa, bagasse, soy hulls, and distillers’ dry grains with solubles (Sharma, Lamsal, & Colonna, 

2016). Lipids used were various vegetable oils (Davila, Marchal, & Vandecasteele, 1994), free 

fatty acids (Ashby, Solaiman, & Foglia, 2008), diesel (Ndlovu, Rautenbach, Khan, & Khan, 

2017), esters (Asmer, Lang, Wagner, & Wray, 1988), alkanes (Hu & Ju, 2001), and crude 

glycerin (Ashby, Nuñez, Solaiman, & Foglia, 2005). The biosurfactants that were produced by 

microorganisms were mostly small molecules such as glycolipids, lipopeptides, neutral lipids, or 

larger molecules such as lipoproteins, lipopolysaccharide-protein complexes, and 

polysaccharide-protein-fatty acid complexes (Ashby, Solaiman, & Zerkowski, 2009). This 

review focuses on two classes of biosurfactants, namely glycolipids and lipopeptides, examples 

of which include rhamnolipid, sophorolipids, and surfactin that were studied recently (Henkel, 

Geissler, Weggenmann, & Hausmann, 2017). Rhamnolipids are glycolipids; the hydrophilic 

groups consist of either one or two L-rhamnose, which is linked by a glycosidic bond to the 
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hydrophobic group made up of one or two β-hydroxy fatty acids (Chong & Li, 2017). Similar to 

rhamnolipids, sophorolipids consist of the disaccharide sophorose and hydroxyl fatty acid 

(Develter & Lauryssen, 2010). Surfactin is a lipopeptide composed of a sever-amino acids 

peptide loop and fatty acid chains that are 13-15 carbons long (Reznik, Vishwanath, Pynn, 

Sitnik, Todd, Wu, et al., 2010). Table 2 lists these three biosurfactants, microorganisms 

producing them, and their applications; it is important to note that the biosurfactants listed in the 

Table 2.2 were not a single pure molecule, rather, mixture of isomers, or mixture of monomer or 

dimers that differ in number of sugar molecules. 
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Table 2.2 Rhamnolipids, sophorolipids and surfactin's application studies 

Biosurfactants 

Working 

microorganisms Applications Reference 

Rhamnolipids 

Pseudomonsa 

aeruginosa, P. 

chlororaphis, 

P.fluorescens. 

Burkholderia 

species. 

Acinetobacter 

species. (Li 2017) 

The pseudomonsa utilized the waste oil and crude oil growth medium, thus 

decreased the viscosity of the crude oil and the interfacial tension  between oil, 

water and sand; The fermentation process also improved the oil solubilization, 

thus resulted in enhanced biodegradation and oil recovery. Li 2005 

Rhamnolipid from fermentation reduced the surface tension of water to 29.4 

mN/m and sucessfully removed some fractions of aromatic or paraffinic 

hydrocarbons from contaminated sandy soil (Anna 2008) Anna 2008 

The fermentation extract from P.aeruinosa and purified mono- and di-

rhamonolipids showed inhibition effect against plant pathogenic fungi (Sha 

2012) Sha 2012 

Using 1% rhamonolipids to pre-condition polystyrene reduced Listeria 

monocytogenes and Staphyloccocus aureus adhesion because that rhamonolipids 

reduced the hydrophobicity of the polystyrene surface Gomes 2012 

 Pre-conditiong on the PVC (polyvinyl chloride) microplate with 100 ug of 

rhamonolipid inhibited Salmonella enterica biofilm formation .  Mireles 2001 

However, it was not able to reduce biofilm formation of L.monocytogenes and S 

enteritidis on polystyrene. 

Nitschke 

2008 
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Table 2.2 (continued) 

Sophorolipids 

Candida bombicola, 

C apicola (Nitschke 

2007), Rhodotorula 

babjevae (Sen 2017) 

Sophorolipid was less toxic to aquatic fleas compared with commercial 

surfactants alkyl polyglucoside, linear alkylbeneze sulfonate, lauryl ethersulfate 

and also had much better cleaning effect on hard surface. The surface tension 

was reduced to 32-34 mN/m depending on measurement method. 

 Develter 

2010 

Possessed emulsifying activity and stability for liquid paraffin and sunflower oil 

at the range 20-80oC at pH 8. However, the emulsion stability decreased with 

increased salt concentration. The emulsion droplet size could be as small as 625 

nm. Patil 2017 

Demonstrated antifungal properties against plant and human pathogens, 

reduced the culture medium surface tension to 32.6 mN/m. Sen 2017 

Can be produced in the medium of sugar cane molasses and chicken fat or 

sunflower oil. Sophorolipids reduced the water surface tension to 35 mN/m and 

enhanced the bioremendiation of soils contaminted with lubricating oil. 

Minucelli 

2017 

Facilitate gel formation of silk fibroin by forming micelles that promote the  

intermolecular beta sheet formation. Dubey 2016 

Reduced the water surface tension to 33.5 mN/m, demonstrate inhibitory effect 

for Staphylococcus aureus and Escherichia coli and had comparable detergent 

effect than commercial detergent. 

Joshi-Navare 

2013 
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Table 2.2 (continued) 

Surfactin 

Bacillus 

amyloliquefaciens 

(Ndlovu 2017a, 

Alvarez 2015) 

Inhibition against opportunistic and pathogenic microorganisms. Ndlovu 2007b 

Surfactin maintained great emulsifying ability above the pH 7.4 for vegetable 

oil . Long 2017 

Surfactin was able to co-precipitates with insulin and protect it from acidic and 

enzymatic attack in the gastrointestinal tract; it also facilitate the insulin to 

penetrate through the cell membrane of the intestinal tissues so it can be used as 

oral delivery agent.  Zhang 2016 

Purified surfactin from commercial product was not showing antimicrobial 

activity. 

Nonejuie 

2016 

Four surfactin analogs (994-1073 g/mol) and bacillomycin D were found to 

show broad spectrum to foodborne pathogens and some molds that cannot 

inhibit nisin .  Lee 2016 

Surfactin recovered petuleum oil from oil-contaminated sands, and amount of 

oil removed was comparable with SDS removed oil. 

Alvarez 2015, 

AI-Wahaibi 

2014,Liu 

2015 

Using 0.25% surfactin to pre-condition the polystyrene surface reduced the 

biofilm formation by Listeria monocytogenes and Salamonella enteritidis. Gomes 2012 

Pre-conditioning with 100 surfactin on PVC (polyvinyl chloride) microplate 

inhibited the Salmonella enterica biofilm formation. Mireles 2001 

It was also able to reduce biofilm formation of L monocytogenes and S 

enteritidis on the polypylene surface by making the surface more hydrophilic 

which increased the electrostatic repulsion between bacterial cell and the 

surface . Nitschke 2008 
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In summary, because of the excellent surface activity of these three types of 

biosurfactants, they are used as detergents, emulsifying agents and soil cleansers for 

hydrocarbons. Because of their antimicrobial properties, they are also used for antimicrobial 

behavior against foodborne pathogens and plant fungus. Because of their capability to modify the 

surface hydrophobicity, they are able to inhibit or delay biofilm formation as well. Although they 

have potential usages in different applications, there are some issues with microbial 

biosurfactants. The chief one among them is low yields during fermentation, especially for 

surfactin whose production yield was only around 1g/L (Ndlovu, Rautenbach, Vosloo, Khan, & 

Khan, 2017). Compared with rhamnolipids and sophorolipids, for which the yields were reported 

at around 13.2g/L (Santa Anna, et al., 2007), and in the range of 20-40 g/L (Minucelli, et al., 

2017; Sen, Borah, Bora, & Deka, 2017), respectively, surfactin’s yield was the lowest. For any 

use in food application, toxicity studies are required for the biosurfactants. Some genetic 

engineering may also be required to transfer the biosurfactant-producing genes from pathogenic 

microorganisms to non-pathogenic ones. For example, the Pseudomonsa aeruginosa for 

producing rhamnolipids is a pathogen so developing another engineered bacteria is needed 

(Chong & Li, 2017). 

2.5 Sugar-fatty acids esters functionality studies 

2.5.1 Sugar-fatty acid esters structures-surface properties 

 The critical micelle concentration (CMC) is one of the most important properties of 

surfactants as it determines how efficiently the surfactant can reduce surface tension and impart 

related functionalities. The effect of acyl chain length, sugar moiety and degree of acylation on 

CMC of sugar-fatty acid esters have been studied. Ferrer, Comelles, Plou, Cruces, Fuentes, 

Parra, et al. (2002) studied a variety of di- and tri- saccharide fatty acid esters with 12-18 alkyl 
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chain lengths and reported these esters’ CMC ranged from 2-250 μM and the surface tension 

ranged from 24.5-36.5 mN/m. The CMC of the surfactants decreased as the hydrocarbon 

numbers increased. This is because longer alkyl chains have increased hydrophobic interaction, 

thus, promoting the formation of micelles. Sugar moiety types also affect the CMC in decreasing 

order following the trend: sucrose>maltose>leucrose>maltotriose (Ferrer, et al., 2002). The same 

authors also compared the CMCs of the di- and tri- esters with monosaccharide monoesters and 

found the latter ones had much lower CMC and exhibit higher solubility. As for the higher 

degree of acylation, they were not able to determine the CMC because of the low solubilities. 

However, another study reported diester of sucrose reduced less surface activity (foamability) 

compared with monoester due to different packing or formed aggregates affecting the adsorption 

at the surface (Husband, Sarney, Barnard, & Wilde, 1998). Abran, Boucher, Hamanaka, Hiraki, 

Kito, Koyama, et al. (1989) studied the rigidity of a series of sucrose esters with different alkyl 

chain lengths (C8-C18) and reported esters with longer chain lengths (C12-18) had better 

thermal stability in terms of stabilizing protein, and more rigid structures. By studying the esters’ 

capability to reduce surface tension, they also proposed the relationship between the rigidity of 

structure and the ability to reduce surface tension - in a limited surface area under the same 

concentration, those having less rigid structure allows molecules occupy larger surface, thus the 

surface tension can be effectively reduced. While those with more rigid structure, molecules tend 

to form micelles rather than spread on the surface. 

 The configuration of the carbohydrate moieties affects the surface activity, as different 

configurations result in different packing patterns. Garofalakis, Murray, & Sarney (2000) 

compared sucrose esters with same sugar head groups but with different stereochemistry. 

Interestingly, C12-β-D-glucoside had much higher CMC (0.13mM) than it of C12-α-D-
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glucoside, as it decreased surface tension by 8 mN/m or more than others. The reason could be 

the β-anomer that had more number of intramolecular hydrogen bonds with each other and less 

hydration with water, which resulted in a more efficient packing and achieved a lower surface 

tension. In brief, the capability of the hydroxyl groups to form hydrogen bond among themselves 

and with the surrounding water depend on the number and positions of the hydroxyl groups that 

affect their packing pattern and influence the CMC and surface tension.  

2.5.2 Sugar fatty acid esters’ use in foods 

Sugar-fatty acid esters have been used in food, cosmetic, detergent and pharmaceutical 

industry, among others. Sucrose esters were probably the earliest ingredients that have been 

approved as ‘Generally Regarded As Safe’ ingredients by FDA, such as emulsifiers in beta-

carotene color preparation (GRN 129, FDA, 2017), fruit flavored beverages (GRN 248, FDA, 

2017) and foaming agents (GRN 421; FDA, 2012). Sucrose fatty acid esters have been used in 

food for more than 20 years (GRN 514; FDA 2014). Safety studies demonstrated sucrose 

monoester to hydrolyze into sucrose and fatty acids by pancreatic lipase (Berry & Turner, 1960).  

The applications in food system have been studied, but not many published studies are 

available. Neta, dos Santos, de Oliveira Sancho, Rodrigues, Gonçalves, Rodrigues, et al. (2012) 

used fructose, sucrose and lactose ester to coconut milk and tested surface tension and emulsion 

index. It was demonstrated lactose ester to be slightly more effective in reducing surface tension 

and achieving higher emulsion index. However, this study did not specify the degree of 

esterification of the disaccharide. Other sugar derivative esters, such as sugar alcohol esters were 

also studied in terms of surface tension reduction. It was found that biobased surfactant 

enzymatically synthesized by Chromobacterium viscosum from sorbitol and plant and animal 

lipid were more potent in reducing the surface tension between xylenes and water than 
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chemically synthesized sorbitan monoesters (monooleate, monostearate, monopalmitate) due to 

the higher hydrophilicity of sorbitol (Chopineau, McCafferty, Therisod, & Klibanov, 1988).  

2.5.3 Antimicrobial properties of sugar-fatty acids. 

Sugar-fatty acid esters are good antimicrobial agents that can be applied to food systems 

since they are nontoxic, nonirritant, odorless, and tasteless (Mitsubishi-Kagaku Foods 

Corporation, 2016). Minimal inhibitory concentration (MIC) is an important indication of 

antimicrobial efficacy of agents and is defined as the lowest bacteriostatic concentration for 24 h 

(Huang, Wei, Zhao, Gao, Yang, & Cui, 2008). Table 2.3 lists several studies for the 

antimicrobial effect of various sugar fatty esters and methyl sugar derivative esters. Many factors 

contribute to antimicrobial effect, such as food type and fat composition, storage temperatures, 

structures of sugar esters, and degree of esterification. Chen, Nummer, & Walsh (2014) reported 

lactose monolaurate had activity against five strains of Listeria monocytogenes in milk, yogurt, 

and cottage cheese. Surprisingly, the monolaurate only had inhibitory effect at 37℃ rather than 

4℃. The increased fat level reduced the antimicrobial function in food. Hathcox & Beuchat 

(1996) applied sucrose monolaurate in raw ground beef in the concentration range of 300 μg/mL-

1000 μg/mL and reported no inhibition effects. Therefore, the nature of the food affects the 

antimicrobial properties, probably because the food state and composition interact with 

antimicrobials thus affecting their efficacy. For the effect of sugar esters structure, both sugar 

moiety and the levels of esterification were reported to affect the antimicrobial efficacy of 

biobased surfactants. Habulin, Šabeder, & Knez (2008) found that sucrose esters had stronger 

antibacterial activity compared to fructose fatty acid esters. Nobmann, Smith, Dunne, Henehan, 

& Bourke (2009) also proposed that the type of sugar moiety affected the efficacy, since methyl 

mannose esters derivative had lower MIC than those of methyl glucose esters. Diesters were not 
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as good as monoesters, which was attributed to their lower solubility in solvents: Ferrer, Soliveri, 

Plou, López-Cortés, Reyes-Duarte, Christensen, et al. (2005) reported sucrose dilaurates and 6-

O-lauroylglucose did not show antimicrobial activity due to low aqueous solubility, while 

monoester of sucrose and maltose inhibited growth of Bacillus and Lactobacillus strains. Zhao, 

Zhang, Hao, & Li (2015) and Habulin, Šabeder, & Knez (2008) also reported that lauryl diesters 

were less effective in inhibiting bacteria growth. Gram-positive bacteria were reported to be 

more susceptible to mono and di-saccharide lauryl esters than gram-negative bacteria. For 

example, Nobmann, Smith, Dunne, Henehan, & Bourke (2009) tested the minimum inhibitory 

concentration of several carbohydrate fatty acid derivatives and found they were more efficient 

for Listeria (MIC less than 0.1 mM) than Escherichia, Salmonella, Enterobacter and 

Pseudomonas (the MIC more than 10 mM). Zhang, et al. (2016) reported the E.coli O157:H7 

was more resistant to disaccharide esters than Staphyloccocus aureus. The combination of other 

chemicals with sugar esters were also studied for their synergistic effect. The combination of 

nisin and sucrose fatty acid were reported to have enhanced antimicrobial affect against gram 

negative (Stphylococcus aureus and Listeria monocytogenes) and spores of Clostridium 

sporogenes rather than against gram positive bacteria (Escherichia coli and Pseudomonoas 

fluorescens) (Thomas, Davies, Delves‐Broughton, & Wimpenny, 1998).  

Table 2.3 Antimicrobial properties for various sugar-fatty acid esters against food-borne pathogens 

Esters Gram negative Gram positive Yeast Reference 

Fructose ester 

Sucrose ester 

Commercial sucrose 

ester 

Escheriia coli 

(low suppression 

from all the 

esters) 

B. cereus (sucrose 

ester MIC 9.375 

mg/ml) 

Saccharomyces 

cerevisisiae (low 

suppression with 

sucrose esters) 

Habulin, 

Šabeder, & 

Knez, 2008 

Lactose monolaurate  Five strain of 

listeria 

monocytogenes 

(5mg/ml did not 

completely 

inhibited) 

 Chen, 

Nummer, & 

Walsh, 2014 
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Table 2.3 (continued) 

Methyl 6-O-lauroyl-

α-D-glucopyranoside 

 

Methyl 6-O-lauroyl-

β-D-glucopyranoside 

 

Methyl 6-O-

octanoyl- α-D-

glucopyranoside 

 

Methyl 6-O-lauroyl- 

α-D-

mannopyranoside 

 

Methl 6-O-lauroyl- 

α-D-

galactopyranoside 

 

Methyl 4,6-di-O-

lauroyl- α-D-

glucopyranoside 

Escherichia coli 

(10-20 μM) 

Salmonella 

enterica (>20 

μM) 

Enterobacter 

aerogenes (>20 

μM) 

Pseudomonas 

fluorescens (>20 

μM) 

 

Listeria innocua 

(0.04-5 μM) 

Listeria 

monocytogenes 

(0.04-2.5 μM) 

 

 Nobmann, 

Smith, Dunne, 

Henehan, & 

Bourke, 2009 

Nisin, sucrose 

palmitate, sucrose 

stearate 

Escherichia coli 

Pseudomonoas 

fluorescens 

Listeria 

monocytogenes 

Bacillus cereus 

(both cells and 

spores) 

Lactobacillus 

plantarum 

Staphylococcus 

aureus 

Spores of 

Clostridium 

sporogenes 

 Thomas, 

Davies, 

Delves‐
Broughton, & 

Wimpenny, 

1998  

Sucrose monolaurate 

Maltose monolaurate 

Lactose monolaurate 

E.coli O157:H7 

(-) 

 

Staphyloccocus 

aureus (250-500 

ug/mL) 

 Zhang, et al., 

2016 

Sucrose 

monododecanoate 

Sucrose 

monohexadecanoate 

 Spores of Bacillus 

stearothermophilus 

Spores of 

Clostridium 

perfringens S40 

 Moriyama, 

1996 

 

It is noted that although sugar-fatty acid esters demonstrated inhibition effect against 

some foodborne pathogens, their MICs were not usually comparable, and studies were not 

consistent with each other for the same sugar esters and pathogens, which may be because of 
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difference in experimental design, medium preparation and initial bacteria count. Also, some 

studies used methanol or ethanol as solvent to dissolve sugar esters and applied them in the 

medium without studying control microbial treatments of only with solvents. Caution is needed 

in comparing results in the literature.  

2.6 Mechanisms of biobased surfactants’ antimicrobial properties 

The mechanism(s) of antimicrobial activity of sugar fatty acid esters have not been 

elucidated completely. Tsuchido, Yokosuka, & Takano (1993) found that sucrose palmitate 

tolerant mutant strain of Bacillus subtilis had lower uptake of sucrose monopalmitate from the 

growth medium. A higher amount of 41 kDa membrane protein was also observed. However, the 

amount of the autolytic enzyme (autolysin) was not significantly different between normal and 

mutant strains, which might indicate that the control of the autolytic enzymes was associated 

with the 41 kDa membrane protein affecting the intake of sucrose monopalmitate. However, this 

mutant strain only showed resistance to long-chain esters (palmityl and stearyl) rather than 

shorter-chain esters such as sucrose caprylyl ester, lauryl ester and myristyl ester. The inhibition 

of sugar-fatty acid esters to bacterial spores was also reported. For example, Moriyama (1996) 

found that sucrose esters had antimicrobial action on spores of Bacillus stearothermophilus and 

Clostridium perfringens S40. The mechanism involved the coatings of sucrose esters on the 

spores that prevented the spores from absorbing nutrients. However, Sugimoto, Tanaka, 

Moriyama, Nagai, Ogawa, & Makino (1998) reported that Bacillus cereus and their spores 

developed resistance to the sucrose esters due to the esterase secreted from the vegetative cells 

and spores.  

The mechanisms of antimicrobial behavior reported for microbial biosurfactants are 

mostly from in-vitro interaction of biosurfactants with artificial membrane bilayers 
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(phospholipids). Thennarasu, Lee, Poon, Kawulka, Vederas, & Ramamoorthy (2005) studied the 

interaction of antimicrobial peptide subtilosin A with various phospholipids. They reported that a 

part of the subtilosin peptide induced the conformation change in the lipid head group. The 

subtilosin also affected the ordering of the lipid acyl chains in DMPC (1,2-dimyristoyl-sn-

glycero-3-phosphocholine) to a small extent, which was reflected by the up field shift in 31P 

NMR data and broadening of the phase transition peak of DSC (differential scanning 

calorimetry). Grau, Fernandez, Peypoux, & Ortiz (1999) also found that the addition of 

biosurfactant surfactin to various phospholipids resulted in different packing patterns of 

phospholipids, which was reflected by the DSC data. The addition of surfactin to DMPC 

(zwitterionic) caused a decline in gel-to-liquid transition temperature with slight decrease in 

enthalpy. The surfactin resulted in a broader phase transition peak and significantly lower 

enthalpy for DMPG (1,2-dimyristoyl-sn-glycero-3-phosphorylgycerol sodium salt, negative 

charged), and unchanged gel-to-liquid crystalline phase transition temperature for DEPE (1,2-

dielaidoyl-sn-glycero-3-phosphoethanolamine, zwitterionic), but broadened the lamellar-

hexagonal-HII transition temperature range. Also, enthalpies for the two-phase transition process 

decreased, indicating surfactin’s destabilizedation of the hexagonal structure of DEPE. They 

concluded that surfactin perturbed the cooperativity between the acyl chains in the gel state by 

inserting itself into the acyl chains with polar amino acids laying near the lipid-water interface. 

They also observed that at the highest concentration, surfactin was able to form clusters with 

phospholipid, which can give rise to membrane pore formation and leakage through bacterial 

membranes. These studies indicated that surfactin interacted differently depending on the type of 

the phospholipids in membranes. The common observations were that surfactin loosened the 

phospholipid bilayer compaction that resulted in a more fluid state. Leakage from phospholipids 
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unilamellar vesicles would occur at higher biosurfactant concentrations due to formation of 

surfactant-phospholipid clusters (Thennarasu, Lee, Poon, Kawulka, Vederas, & Ramamoorthy, 

2005); membrane solubilization later on would occur due to the formation of mixed micelles 

with the phospholipid (Helenius & Simons, 1975). Usually, the surfactant concentration that 

induced the leakage is higher than the critical micelle concentration (CMC). Heerklotz & Seelig 

(2007) found that the cellular leakage started at surfactin-to-phospholipid ratio of 0.22 and 

completed at 0.43 (solubilization), the concentrations that were much higher than CMC. The 

surfactin also showed influence on the spores of some plant pathogenic fungus, in that, surfactin 

combined with other lipopeptide from Bacillus subtilis made the spores more permeable (Liu, 

Hagberg, Novitsky, Hadj-Moussa, & Avis, 2014). 

2.7 The antimicrobial properties of emulsions/nanonemulsions stabilized by various 

emulsifiers 

Although biobased surfactants were shown to have antimicrobial properties by 

themselves, their use in food applications as both emulsifiers and antimicrobials has not been 

reported. If the biobased surfactants can serve as both emulsifiers and effective antimicrobial 

agents in the food system, they could find broader applications in food systems, and presumably, 

costs could be reduced. Many other emulsifiers-stabilized food systems, with or without 

antimicrobial lipid phase, has been reported. These studies investigating 

emulsions/nanoemulsions without antimicrobial lipid phase claimed that the oil droplets can fuse 

with, and then disrupt, the bacterial cell membranes because emulsion droplets possessed 

positive charge and interacted with negatively charged bacterial membranes (Hamouda & Baker, 

2000). The studies with emulsifiers and antimicrobial lipid phase proposed that the lipid phase is 

better dispersed or solubilized into the aqueous phase so the contact area of the lipid and bacteria 
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will be enlarged (Terjung, Löffler, Gibis, Hinrichs, & Weiss, 2012; Wilkinson, 2015; Xue, 

Davidson, & Zhong, 2017). This part of review will focus on the studies that involve using 

antimicrobial lipid phase and discuss the effect of several factors that influenced the inhibition 

behaviors.  

Essential oils (EO) are one of the most studied antimicrobial lipid phase because of their 

strong antimicrobial activity. However, it has limited use in food for their strong aroma not being 

very acceptable for consumers. Adding emulsifiers to the EO systems not only improves the 

dispersion of essential oil in the food, so that the antimicrobial property could be enhanced, but 

also may reduce the EO concentrations to acceptable levels to consumers. The factors important 

for emulsion systems involving EO were are essential oil’s concentration, emulsifiers’ 

concentration and droplet sizes.  

Usually the higher EO concentrations lead to stronger inhibition effects. Chang, 

McLandsborough, & McClements (2015) studied incorporating thyme oil in the emulsifier 

mixture of Tween 80 and lauric arginate with the Ostwald ripening inhibitor vegetable oil; the 

maximum amount of thymol oil (800 µg/mL) completely stopped the growth of the spoilage 

yeast within 24 h while other lower concentrations did not. The increased amount of the 

vegetable oil, while can inhibit the Ostwald ripening, decreased the minimum inhibitory (MIC) 

of the thymol oil (Chang, McLandsborough, & McClements, 2012, 2015). Terjung, Löffler, 

Gibis, Hinrichs, & Weiss (2012) studied Tween 80 stabilized emulsion containing eugenol and 

reported only the concentrations higher than 800 ppm attaining 5-log reduction for E.coli in 24 h. 

There were no general trends reported for the effect of emulsifier concentration on 

antimicrobial behavior of resulting emulsions. Wilkinson (2015) reported only the intermediate 

concentration (0.01 wt%) of lecithin-stabilized eugenol emulsion increased the effectiveness, but 
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lower or higher concentration did not differ from the control.  Li (2011) observed the emulsion 

formulated with eugenol or carvacrol with lower concentration (0.0025 wt%) of lecithin 

decreased the D-value at 37°C for E.coli O157:H7 more than other higher concentrations. They 

proposed the reason to be concentrations of lecithin being lower than the critical micelle 

concentration (CMC) that were able to bring antimicrobial effects higher concentrations above 

CMC could not, due to the formation of micelles.  

The role of emulsion droplet sizes is not very clear in enhancing inhibition effects of 

antimicrobials; although it is generally hypothesized that smaller droplets lead to enhanced 

inhibition effects, there are no clear trends to describe the relationship between droplet sizes and 

antimicrobial activities. Terjung, Löffler, Gibis, Hinrichs, & Weiss (2012) found larger droplets 

led to better antimicrobial activity to kill Listeria innocua than smaller droplet sizes in Tween 80 

emulsions containing phenolic antimicrobials. By measuring the concentrations of the phenolic 

compounds in the aqueous phases, higher amount of antimicrobials in the aqueous phase in 

coarse emulsion (3000 nm) were found than those in nanoemulsion (80 nm). Therefore, they 

proposed the possible reason as more antimicrobial locating inside in the emulsion droplets 

limiting the access of antimicrobials to bacteria. However, another study reported nanoemulsions 

(<200 nm) having better inhibition effects to foodborne pathogens than coarse emulsions 

(>500nm): Topuz, Özvural, Zhao, Huang, Chikindas, & Gölükçü (2016) used lecithin to 

emulsify anise oil and found that nanoemulsion inhibited to larger extent than the coarse 

emulsion and non-emulsified treatments. The contradictory conclusions not only existed for 

droplet sizes’ effect, the emulsions themselves did not necessarily result in increased 

antimicrobial activity. Burt & Reinders (2003) found the lecithin stabilized essential oil (oregano 

oil and thyme oil) had the MIC twice as high as free essential oil; they proposed lecithin to orient 
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itself between oil and water phase, which physically hindered the interaction between essential 

oil and bacterial cells. However, some other studies (Donsì, Annunziata, Vincensi, & Ferrari, 

2012; Liang, Xu, Shoemaker, Li, Zhong, & Huang, 2012) reported the nanoemulsions containing 

essential oil showing significantly increased bacteriostatic effect than non-emulsified essential 

oil (peppermint oil, carvacrol, limonene and cinnamaldehyde). Donsì, Annunziata, Vincensi, & 

Ferrari (2012) measured the concentration of essential oil in the aqueous phase and concluded 

the nanoemulsion increased the solubility of essential oil thus resulted in improved effect. In 

light of seemingly contradictory reports, it is hard to generalize the effect of emulsified 

antimicrobials and their droplet sizes without evaluating the system on hand. One of the studies 

described in this dissertation aims to study this question for emulsion/nanoemulsion stabilized by 

different emulsifiers containing antimicrobial agent cinnamaldehyde. 

The food composition also affects the antimicrobial properties for the emulsified essential 

oil. For example, Xue, Davidson, & Zhong (2017) used the gelatin and lecithin to disperse 

thymol oil in milk with different fat content. Although these two agents did not decrease the 

MIC, they achieved 5-log reduction of E. coli O157:H7 within 24 h in skim milk, which were 

shorter than non-emulsified treatments. However, in the 2% fat and whole milk, the time to 

achieve 5-log reduction was increased to 50 h, indicating fat protected bacteria. When the 

researchers applied the same emulsion in the cantaloupe juice (pH 6.81), E. coli O157:H7 and 

Listeria monocytogenes was inhibited in 24 h but recovered growth after that. These results 

indicated the different compositions of milk and cantaloupe juice affected the antimicrobial 

effect of the nanoemulsion. 
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2.8 Summary 

        The published literature discussed in above sections compared biobased surfactants 

production methods and applications as emulsifying and antimicrobial agents, and revealed some 

gaps in research areas. In terms of production, utilizing different types of biomass, increasing the 

biobased surfactants production yields by properly selecting synthesis conditions or genetically 

modifying non-pathogenic bacteria need additional research. In terms of biobased surfactants 

application as antimicrobials, the use of biobased surfactants as both emulsifiers and 

antimicrobials should be studied and the mechanisms of emulsions for antimicrobial activities 

investigated. 
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3.1 Abstract 

The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using 

lipase enzyme were studied and their emulsion functionality in oil-in-water system were 

compared. Reactions at 3:1 molar ratio of fatty acids-to-glucose had the highest conversion 

percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate 

solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance 

technique that the chemical shifts of glucose H-6 and α-carbon proton of fatty acid in the esters 

shifted to the higher fields. Contact angle of water on esters’ pelleted surface increased as the 

hydrophobicity increased. Glucose esters’ and commercial sucrose esters’ functionality as 

emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the 

oil droplets diameter doubled during 7 days. Sucrose esters prevented coalescence during 7 days 

since the droplets diameter did not have significant change.  

Key words: glucose ester; synthesis; lipase; contact angel; emulsifier; sucrose ester.  
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3.2. Introduction 

Surfactants are amphiphilic molecules with both hydrophilic and hydrophobic moieties 

that can adsorb at the interface between different polarity phases and reduce interfacial tension. 

Thus, they have functionality in detergency, emulsifying, dispersion, foaming industry (Greek, 

1991, 1990). Traditional surfactants are mainly derived from petroleum industry products, which 

requires unfavorable reaction conditions such as high temperature, high acidity, alkalinity , 

organic solvent, and have low biodegradability and high aquatic toxicity (Deleu & Paquot, 

2004). However, surfactants can also be produced via enzymatic reactions or microbial 

fermentation utilizing biological feedstocks. These environmental compatible surfactants, also 

called biobased surfactants, are biodegradable and environmental friendly. Some of the 

microorganisms that produce surfactants during fermentation are Pseudomonas, Rhodococcus, 

Mycobacterium, Toruplopsis, Bacillus, Thiobacillus, etc  (Desai & Banat, 1997). The surfactants 

derived from microorganisms are glycolipid, lipopeptides, lipoproteins, fatty acids and 

phospholipids, etc (Desai & Bannat 1997).  In enzyme-catalyzed production of biobased 

surfactants, the common enzymes utilized are lipase, proteinase and glucosidase (Hayes, 2011). 

Lipase catalyzes ester bond formation between fatty acyl groups and hydroxyl group of alcohols 

or polyols; amino acid also can act as acyl donor and form ester or amide bond if proteinase are 

used; glycosidases catalyze the acetal bond formation between saccharides and fatty alcohols 

(Van Rantwijk, Woudenberg-van Oosterom, & Sheldon, 1999). Lipase-catalyzed reactions were 

studied in terms of reaction solvent, substrate ratio, reaction time etc. Commonly used acyl 

acceptors are carbohydrate, sugar alcohol. Acyl donors are various fatty acids or fatty acid esters. 

Enzymatic synthesis of esters is one of the major methods due to the higher selectivity, relatively 

lower temperatures (lower than 70°C), lower solvent toxicity, and easier separation of products. 
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Enzyme that have been used for synthesis of esters are subtilisin from Bacillus amyloliquefaciens 

(Rich, Bedell, & Dordick, 1995), lipase from Candida antarctica (Pedersen, Wimmer, 

Emmersen, Degn, & Pedersen, 2002), Candida rugosa (Zaidan, Abdul Rahman, Othman, Basri, 

Abdulmalek, Abdul Rahman, et al., 2012) Mucor miehei (Degn, Pedersen, & Zimmermann, 

1999), Humicola lanuginose (Ferrer, Cruces, Bernabe, Ballesteros, & Plou, 1999), Thermomyces 

lanuginosus (Tsavas, Polydorou, Faflia, Voutsas, Tassios, Flores, et al., 2002), and alkaline 

protease from Streptomyces spp (Kitagawa, Tokiwa, Fan, Raku, & Tokiwa, 2000).  Sugar- fatty 

acid esters are non-ionic surfactants with a wide range of hydrophilic-lipophilic balance (HLB) 

values. Since they are biodegradable, non-toxic (Ferrer, Cruces, Bernabe, Ballesteros, & Plou, 

1999), non-irritant to skin (Plat & Linhardt, 2001) and odorless, they are widely used in food, 

pharmaceutical, cosmetic and detergent industries. Sucrose esters have been approved by Food 

and Drug Administration and are widely used in food industry, such as wheat products, 

confectioneries, and dairy products, etc. The functions are various, such as increasing dough 

resistance to kneading, increasing cake volume, prevent stickiness to the machine, make stable 

emulsion, improve mouthfeel, prevent staling, etc. (Mitsubishi-Chemical Foods Corporation).   

The challenge to synthesize sugar-fatty acid ester enzymatically is to find good solvent(s) 

to solubilize the substrates that have different polarities, at the meantime, not deactivating 

enzymes. It has been extensively studied in different medium, for example, single phase organic 

solvent systems (Degn, Pedersen, & Zimmermann, 1999; Ljunger, Adlercreutz, & Mattiasson, 

1994;), two organic solvent systems (Kitagawa, Tokiwa, Fan, Raku, & Tokiwa, 2000; Reyes-

Duarte, López-Cortés, Ferrer, Plou, & Ballesteros, 2005), non-solvent systems (Martin-Arjol, 

Isbell, & Manresa, 2015), ionic liquid systems, supercritical carbon dioxide (Habulin, Šabeder, & 

Knez, 2008) and deep eutectic systems (Pohnlein, Ulrich, Kirschhofer, Nusser, Muhle-Goll, 
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Kannengiesser, et al., 2015). Mixed organic solvents were preferred than single solvent since by 

varying the ratio of each solvents, solubility of acyl acceptor and enzyme activity can be 

controlled. To avoid the use of organic solvent and address the solubility issues, solvent-free 

system were used (Fregapane, Sarney, & Vulfson, 1991; Ward, Fang, & Li, 1997). However, the 

reaction system had high viscosity and low miscibility (Wei, Yu, Song, & Su, 2003). Ionic 

solvents were used because of their advantage of low vapor pressures and tunable chemical 

structure that can solubilize different substrates (Park & Kazlauskas, 2001)  while they have 

disadvantage of extra steps to synthesize and purify of ionic solvents, and some ionic liquid were 

reported to deactivate the enzyme (Schöfer, Kaftzik, Wasserscheid, & Kragl, 2001). Dimethyl 

sulfoxide (DMSO) and 2-methyl-2-butanol (2M2B) were chosen as reaction media to synthesize 

glucose esters due to relatively high solubility of sugars and being benign to enzymes. 

Although the synthesis of sugar fatty acid esters has been studied extensively, their 

functionality as emulsifiers in the basic oil-in-water systems has not been looked in-depth. 

Glucose is a cheap carbohydrate with only one primary hydroxyl group, therefore, the high 

selectivity is expected. Also, not many research (Arcos, Bernabe, & Otero, 1998; Degn, 

Pedersen, & Zimmermann, 1999; Ljunger, Adlercreutz, & Mattiasson, 1994) studied the 

synthesis condition and their functionalities. The objectives of this study are to: 1) optimize the 

synthesis of glucose esters with respect to substrate ratio and fatty acid types, and 2) evaluate the 

functionality of glucose esters as emulsifiers and compare with commercial sucrose esters with 

different HLB values.  
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3.3. Materials and Methods 

3.3.1 Reagents 

DMSO, 2M2B, D-glucose, HPLC-grade methanol, and molecular sieves (3Å) were 

purchased from Fisher Scientific (Fair Lawn, NJ). Palmitic acid (98%), lauric acid (>98%), 

hexanoic acid (>99.5%), and immobilized lipase from Candida Antarctica were purchased from 

Sigma-Aldrich (St. Louis, MO). Pure canola oil was purchased from a local grocery store. 

Commercial sucrose esters SP30 (sucrose distearate, HLB 6, monoester content 30%), SP50 

(sucrose stearate, HLB 11, monoester content 50%), PS750 (sucrose palmitate, HLB 16, 

monoester content 75%) were donated. 

3.3.2 Synthesis of glucose esters 

The lipase-catalyzed synthesis of glucose esters was carried out in 50-mL Erlenmeyer 

flasks following published method with some modifications  (Ferrer, Cruces, Bernabe, 

Ballesteros, & Plou, 1999). Palmitic acid, lauric acid, and hexanoic acid were used as acyl donor 

and glucose was used as acyl acceptor for esterification reactions. Molar ratios of fatty acid and 

sugar were 0.3 mM: 0.1 mM, 0.2 mM: 0.1 mM, 0.1 mM: 0.1 mM, and 0.1 mM: 0.3 mM.  One g 

molecular sieves and 0.25 g immobilized lipases were added in 10 mL solvent mix (80% DMSO 

and 20% 2M2B). The flasks were incubated at 55°C in a water bath with shaking at 96 rpm for 

48 h.  

After 48 h of reaction, reactants were centrifuged to obtain the supernatant. The 

supernatants were placed under a fume hood overnight to evaporate 2M2B. Water 

(approximately 10:1 v/v of solvent) was added to the medium to precipitate the fatty acid residue 

and esters. The viscous white slurry were filtered to obtain white solid. The solids were washed 

with 10 volumes of methanol for 3-4 times to dissolve free fatty acid residue and obtain highly 
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pure esters. The purity of glucose esters was determined with NMR 1D proton test to obtain the 

area ratio of proton of α carbon (-CH2-COOH) of bonded fatty acid and free fatty acid.  

3.3.3 Quantitation of fatty acid conversion 

The quantitation of fatty acids by HPLC method followed a previous study (Reyes-

Duarte, López-Cortés, Ferrer, Plou, & Ballesteros, 2005) with slight modification. At 12th , 24th , 

36th  and 48th  h, aliquots of reactant mix were withdrawn and measured for residual free fatty 

acid by high performance liquid chromatography (Thermo Scientific, ACCELA 1250 HPLC) 

using a C18 column (Hypersil Gold, 50×2.1 mm, 1.9 µm), a PDA detector (at 200 nm), and 

EZChrom Elite software (Agilent, Version3.2.1). For palmitate acid detection, methanol: water 

70/30 (v/v) with 0.1% v/v acetic acid was used as mobile phase A for the first 2 min, then a 

gradient from this eluent to pure methanol (B) was continued for 5 min, after which the gradient 

was changed back to the original mobile phase for 5 min. The flow rate was 0.5 mL/min and the 

temperature was 45°C. The method to detect lauric acid was the same as it was for palmitic acid. 

For hexanoic acid detection, the mobile phase A was methanol: water 80/20 (v/v) with 0.1% 

acetic acid for 4 min, then a gradient to pure methanol was last for 5min, then it changed back to 

A. The flow rate of mobile phase was 0.5 mL/min for all fatty acids. The conversion of fatty acid 

was calculated as:  

Conversion of fatty acid = (X0-X1)/X0’  100%  

X0- fatty acid concentration at the start of reaction 

X1-residual fatty acid concentration in reaction mix at different time points. 

X0’- theoretical concentration of fatty acid that can be fully converted to ester.  

From stoichiometry of reaction systems, X0’ is the 1/3 of initial concentration at 3:1 acid: 

sugar ratio, and 1/2 of initial concentration for 2:1 ratio.  
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3.3.4 Identification of esters 

Agilent Quadrupole Time-of-Flight (QTOF) 6540 liquid chromatography mass 

spectrometry (LC/MS) was used to identify reaction products. A XDB C18 column (4.6×50 mm, 

1.8 µm) and an electrospray ionization detector were used. The products were scanned in the 

negative mode from 100-1000 Daltons. A gradient from 95% mobile phase A (water, 100%) and 

5% B (methanol, 100%) to 95% B and 5% A was applied for 20 min and kept for another 5 min. 

The flow rate of mobile phase was 0.8 mL/min. Nuclear magnetic resonance (NMR) (Bruker 

Avance III 600, Billerica, MA and Karlsruhe, Germany) was used to confirm the formation of 

ester bonds and chemical shifts of important carbon and hydrogen atoms. The products were 

dissolved in deuterated DMSO to achieve a concentration range of 50-800 mg/mL. 

Heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation 

(HMBC) spectroscopy for 1H and 13C were used to determine the ester bond formation. The 

data were analyzed with the TopSpin software (Bruker, Billerica, MA). 

 Chemical shifts, splitting patterns, J-coupling and positions of hydrogen and carbon for 

reactants and products are as follows:  

Glucose, the spectrum showed it was a mixture of α- and β-anomers.1H NMR (600 MHz, 

DMSO-d6) δ 4.91 (t, J = 4.2 Hz, 1H, H-1), 3.42 (dt, J = 9.1, 4.3 Hz, 1H, H-2), 3.11 (ddd, J = 

10.0, 6.7, 3.6 Hz, 1H, H-3), 3.04 (td, J = 9.3, 5.4 Hz, 1H, H-4), 3.58 – 3.52 (m, 1H, H-5), 3.48 – 

3.44 (m, 1H, H-6a), 3.60 (dd, J = 11.5, 5.9 Hz, 1H, H-6b). 13C NMR (151 MHz, DMSO-d6) δ 

92.67 (C-1), 72.809 (C-2), 73.541 (C-3), 71.03 (C-4), 72.403 (C-5), 61.676 (C-6). 

Palmitic acid. 1H NMR (600 MHz, DMSO-d6) δ 11.93 (s, 1H, -COOH), 2.166 (t, J = 7.5 

Hz, 2H, -CH2CO-), 1.486 (t, J = 7.2 Hz, 2H, -CH2-CH2-CO-), 1.205-1.294 (s, 24H, chain), 0.853 

(m, 3H, -CH3). 
13C NMR (151 MHz, DMSO-d6) δ 174.75 (C=O), 34.119 (-CH2-CO-), 31.87 (-



www.manaraa.com

51 
 

 
 

CH2-CH2-CO-) , 29.661-29.661, 29.31, 29.16, 24.997, 22.617 (-CH2- palmitic acid backbone), 

14.263 (-CH3). 

Lauric acid. 1H NMR (600 MHz, DMSO-d6) δ 11.95 (s, 1H, -COOH), 2.176 (t, J = 7.5 

Hz, 2H, -CH2-CO-), 1.495 (t, J = 7.4 Hz, 2H, -CH2-CH2-CO-), 1.244-1.297 (s, 16H, chain), 0.86 

(d, J = 7.5 Hz, 3H, -CH3).
 13C NMR (151 MHz, DMSO-d6) δ 174.85 (C=O), 34.12 (-CH2-CO-), 

31.816, 29.541, 29.528, 29.449, 29.285, 29.243, 29.079, 24.979, 22.597 (-CH2- lauric acid 

backbone), 14.344 (-CH3). 

Hexanoic acid. 1H NMR (600 MHz, DMSO-d6) δ 11.889 (s, 1H, -COOH), 2.172 (t, J = 

7.6 Hz, 2H, -CH2CO-), 1.502-1.264 (6H, chain), 0.859 (t, J = 7.1 Hz, 3H, -CH3).
 13C NMR (151 

MHz, DMSO-d6) δ 174.86 (C=O), 34.05 (-CH2-CO-), 31.25, 24.64 , 22.31 (-CH2- hexanoic acid 

backbone), 14.16 (-CH3). 

6-O-Palmitoylglucopyranose. 1H NMR (600 MHz, DMSO-d6) δ 4.91 (t, J = 4.4 Hz, 1H, 

H-1), 3.137 (m, 1H, H-2), 3.44 (td, J = 9.1, 4.5 Hz, 1H, H-3), 3.042 (td, J = 9.3, 5.5 Hz, 1H, H-

4), 3.78 (dd, J = 9.5, 6.5 Hz, 1H, H-5), 4.28 (d, J = 11.5 Hz, 1H, H-6a), 4.00 (dd, J = 11.7, 6.2 

Hz, 1H, H-6b), 2.28 (t, J = 7.4 Hz, 2H, -CH2-CO-), 1.51 (q, J = 7.2 Hz, 2H, -CH2-CH2-CO-), 

1.25 (s, 24H, chain), 0.87 (t, J = 6.9 Hz, 3H, -CH3). 
13C NMR (151 MHz, DMSO-d6) δ 92.755 

(C-1), 72.66 (C-2), 73.336 (C-3), 71.035 (C-4), 69.601 (C-5), 64.355 (C-6), 173.363 (C=O), 

33.906 (-CH2-CO-), 31.778 (-CH2-CH2-CO-), 29.534 – 28.931, 24.94, 22.569 (-CH2- palmitoyl 

backbone), 14.341 (-CH3).  

6-O-Lauroylglucopyranose. 1H NMR (600 MHz, DMSO-d6) δ 4.909 (d, J = 4.7 Hz, 1H, 

H-1), 3.137 (m, 1H, H-2), 3.439 (td, J = 9.2, 4.3 Hz, 1H, H-3), 3.043 (m, 1H, H-4), 3.774 (dd, J 

= 9.7, 6.8 Hz, 1H, H-5), 4.277 (d, J = 11.9 Hz, 1H, H-6a), 4.006 (dd, J = 11.7, 6.2 Hz, 1H, H-

6b), 2.28 (t, J = 7.3 Hz, 2H, -CH2-CO-), 1.52 (t, J = 7.1 Hz, 2H, -CH2-CH2-CO-), 1.25 (s, 16H, 
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chain), 0.87 (t, J = 6.8 Hz, 3H, -CH3). 
13C NMR (151 MHz, DMSO-d6) δ  92.754 (C-1), 72.659 

(C-2) , 73.334 (C-3) , 71.027 (C-4) , 69.602 (C-5) , 64.362 (C-6), 173.272 (C=O), 33.909 (-CH2-

CO-) , 31.814 , 29.541 , 29.526 , 29.434, 29.268, 29.24, 28.964, 24.94, 22.592 (-CH2- lauroyl 

backbone), 14.42 (-CH3). 

6-O-Hexanoylglucopyranose  

1H NMR (600 MHz, DMSO-d6) δ 4.911 (d, J = 3.9 Hz, 1H, H-1), 3.132 (m, 1H, H-2), 

3.43 (m, 1H, H-3), 3.055 (dd, J = 17.2, 7.4 Hz, 1H, H-4), 3.771 (s, 1H, H-5), 4.29 (dd, J = 19.7, 

11.6 Hz, 1H, H-6a), 3.997 (m, 1H, H-6b), 2.293, 1.51 (dt, J = 14.7, 7.9 Hz, 2H, -CH2-CO-), 

1.576-1.191 (m, 6H, caproyl backbone), 0.873 (d, J = 8.3 Hz, 3H, -CH3). 
13C NMR (151 MHz, 

DMSO-d6) δ 173.444 (C=O), 34.177 (-CH2-CO-), 31.097, 24.643, 22.287 (-CH2- hexanoyl 

backcone). 

3.3.5 Initial sugar solubility 

Initial sugar solubility of ester was tested using an HPLC. After mixing reactants except 

lipase in the solvents as described in synthesis method above, flasks were incubated in the water 

bath at 55°C at 3.8 rpm for 30 min. After cooling down, aliquots from each flask were run 

through HPLC. A carbohydrate column (HyperRez XP Carbohydrate H+, 300×7.7 mm, 8 μm), a 

guard column (HyperRez XP Carbohydrate H+, 50×7.7 mm, 8 μm) and a RI detector were used 

The temperature for guard column and carbohydrate column were 65°C and 70°C, the flow rate 

was 0.4 mL/min.  

3.3.6 Emulsion stability Index 

0.01% w/w, 0.1% w/w and 0.5 % w/w 100g ester solutions were prepared and mixed 

with 10g canola oil, control treatment did not contain any esters. The mixtures were sonicated for 

10 min to improve ester dispersion. The mixture was homogenized for 2 min at 15,000 rpm using 
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a blender (Bamix Type M 150) and 10 μL- 20 μL aliquots of emulsion were diluted with 2 mL 

deionized water in the spectrophotometer cuvette.  Absorbance of emulsion at 500 nm was 

measured at 0, and 20 min. The emulsion stability index (ESI) was calculated as: 

ESI=A0*20/[A0-A20]. A0 and A20 were the absorbance obtained at 0 min and 20 min (Pearce & 

Kinsella, 1978). The higher ESI values indicated higher emulsion stability. 

3.3.7 Emulsion droplet size distribution  

The emulsion droplet size and distribution was measured by Malvern Particle Size 

analyzer (Mastersizer Hydro 2000). Emulsions with 0.5% w/w level of esters were prepared as 

above and were introduced into the instrument until a laser obscuration of 10-20% was achieved. 

Measurements were taken at time 0 h, 6th h, 24th h, 3rd d and 7th d. 

3.3.8 Contact angle measurement 

Contact angel measurement followed a previous research (Crowley, Desautel, Gazi, 

Kelly, Huppertz, & O’Mahony, 2015). Pellets of each of the esters were prepared with 0.08g 

powdered ester, placing them on a 13 mm pellet die and pressing under a force of 5000 kg for 2 

min in Carver Press (model 3619, Carver Inc, Wabash, IN). Contact angle measurement was 

conducted using a goniometer (Rame-Hart Model 250 Standard Goniometer). Approximately 4 

μL water droplet was dispensed on the pellet’s surface placed on a stage. Side view pictures were 

taken immediately after the water droplet left the syringe tip using a high-resolution camera.    

3.3.9 Statistical analysis 

Statistic test was conducted using SAS 9.4 software (SAS Institute Inc., Cary, NC). Proc 

GLIMMIX test was used to determine significant difference between treatments (P<0.05). At 

least three observations for each treatment were measured for conversion, sugar solubility, 

contact angel, emulsion stability and droplet size analysis. 
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3.4. Results and Discussion 

3.4.1 Fatty acid conversion 

Figure 3.1 (a), (b) and (c) show the conversion percentages of palmitic acid, lauric acid 

and hexanoic acid over 48 h, respectively. The fatty acid/glucose molar ratios were compared for 

optimum ratio for the highest conversion. For each glucose-fatty acid ester studied, the highest 

conversion of fatty acid was achieved when the ratio was 3:1 (97.17%, 76.57%, 113.11% for 

glucose palmitate, laurate and hexanoate, respectively). The second highest conversions were at 

the ratio of 2:1 (75.96%, 62.82%, 73.66%, respectively). The 1:1 and 1:3 ratios did not have any 

significantly differences; the conversion was around 50%, 40%, 30%, respectively for palmitic 

acid, lauric acid and hexanoic acid.  Higher concentrations of FA favored formation of the 

products as explained by the equilibrium constant: 

 k= [ester][water]/[fatty acid][glucose]    (Equation 1);   

or, [ester] = k[fatty acid][glucose]/[water]    (Equation 2).  

At a given temperature (55°C in this study), k is a constant.  At higher molar ratios of 

fatty acid to glucose (2:1 or 3:1), the limiting reactant is glucose, thus, only 1/3rd of available 

fatty acid is converted to ester and water.  Therefore, the increase in fatty acid concentration in 

reaction mix would be larger than the increase in water amount. Meanwhile, the glucose 

concentration remained at a similar level compared to the reaction when the ratio was 1:1. 

Therefore, the increase of fatty acids amount increased the ester amount according to Equation 2, 

as reflected by the conversion percentage. For the reactants ratio of 1:1 and 1:3 of fatty acid to 

glucose, glucose solubility was limited in the medium as glucose crystals could be seen 

throughout the reaction, and fatty acid were completely dissolved. For these conditions, terms in 

Equation 2 did not have significant changes, indicating similar conversions for these two ratios. 
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Among various fatty acids, the hexanoic acid had the highest conversion percentage at 3:1 ratio 

(113%). This could be due to the formation of diesters, along with monoesters, but at low levels 

since they were not detected by LCMS and NMR. Two reasons could contribute to the higher 

conversion of hexanoic acid: shorter carbon chains making the solvent more polar resulting in 

higher glucose solubility (data will be shown in later section) than other two fatty acids, and 

possible stearic hindrance- the smaller molecule would have easier access to enzyme active sites 

and result in more esterification. 

3.4.2 Initial substrate concentration and initial conversion rates 

Influence of reactant concentrations on the initial conversion rates (linear range for first 

three hours) is presented in Table 3.1. For the molar ratios of 3:1, 2:1, 1:1 (fatty acid/glucose) in 

esterification of palmitic acid and lauric acid, fatty acids were completely soluble in solvent, so, 

the fatty acids concentration increased as molar ratio increased leading to higher initial fatty acid 

conversion rates. For molar ratio increase from 1:1 to 3:1 (fatty acid concentration increase from 

74.3 mM to 243.7 mM), the initial conversion rates also increased threefold from 3.3 μmol/(min ∙ 

g) to 9.6 μmol/(min ∙ g). Glucose did not completely solubilize for these molar ratios of 1:1 and 

1:3 (fatty acid/glucose), because sugar crystals were seen in the medium, thus we examined the 

soluble glucose concentration in reactant. For fatty acid: glucose molar ratios of 1:1 and 1:3 with 

increase in glucose concentration from 21 mM to 28.2 mM, the initial conversion rates increased 

from 3.3 μmol/(min ∙ g) to 5.2 μmol/(min ∙ g). From these two comparisons, it is seen that the 

concentration of both fatty acid and glucose had direct and proportional relationship with the 

initial conversion rate, indicating the reaction to be a first-order reaction in terms of either fatty 

acid or glucose (Degn & Zimmermann, 2001). For hexanoic acid, the increase of fatty acid 

concentration from 146.5 mM to 235.2 mM almost quadrupled the rate (Table 3.1), and the 
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glucose solubility did not change over the three ratios and did not affect the initial rate. The 

highest conversion rate obtained was 11.83 μmol/(min∙g), which is similar to reported 15.2 

μmol/(min∙g) for synthesis of glucose myristate (Degn & Zimmermann, 2001)  that was 

conducted in t-butanol: pyridine system. Although the glucose solubility was higher in our 

system, the deactivation of lipase in DMSO is stronger than pyridine. They reported that below 

molar ratio of 10:1 up to 20 mg/mL soluble glucose concentration, the initial reaction rate 

increased as the ratio increased, which was consistent with our study when we kept the sugar 

level constant. The effect of lauric acid and glucose concentration on initial conversion rates in 

the single solvent 2M2B was reported to increase when either of the two substrate concentrations 

increased, however, lauric acid was saturated at 140 mM, glucose was not saturated up to 50 mM 

(Flores, Naraghi, Engasser, & Halling, 2002). In our study, we did not find saturation levels for 

both substrates even at much higher fatty acid concentration of 259.6 mM. The reason for the 

difference in solubility could be that our bi-solvent system dissolved more fatty acids boosting 

the initial rates.  

Initial sugar solubility can also be associated with medium hydrophobicity (Pedersen, 

Wimmer, Emmersen, Degn, & Pedersen, 2002; Reyes-Duarte, López-Cortés, Ferrer, Plou, & 

Ballesteros, 2005). Glucose solubility increased as the chain length of the fatty acid decreased at 

each substrate ratio.  The solubility is also associated with the amount of sugar that was put into 

the medium, as it increased when the ratio of sugar increased, since they themselves created a 

more polar environment. Though not measured in our study, previous studies indicated as the 

esters were being produced, glucose solubility would increase through hydrophobic interaction 

(Degn & Zimmermann, 2001; Tsavas, et al., 2002).  
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The initial conversion rates may or may not relate to the length of the acyl donor, as 

variously reported. Some studies reported the reaction rate with was faster for shorter chain 

length of fatty acid (C4-C12) that were esterified with disaccharide (Pedersen, Wimmer, 

Emmersen, Degn, & Pedersen, 2002). Adelhorst, Bjokling, Godtfredsen and Kirk (1990) 

reported the enzyme showed faster reaction with longer fatty acids (C12-C18) than shorter acids 

(C8-C10) in solvent free condition. However, Degn, Pedersen, & Zimmermann, (1999) found 

that the initial reaction rate was independent within chain length C2-C20 of acyl donors for 

glucose. Our study also indicates that the initial rates and chain length were independent. The 

difference could be due to the difference in substrate and reaction conditions. 

3.4.3 Product identification and complete 1H and 13C assignment for reactants and products. 

The formation of glucose palmitate, glucose laurate and glucose hexanoate were 

confirmed by LCMS (data not shown) and NMR techniques. In the HMBC graph (Figure 3.2) of 

reaction mixture of glucose and palmitic acid, the sixth protons (4.01 and 4.27 ppm) of glucose 

were seen to have interacted with carbonyl carbon indicating the formation of ester bonds. The 

chemical shifts of H-6 of glucose and α-carbon proton of fatty acid in the esters to the higher 

fields indicated the chemical environment change due to esterification that caused de-shielding 

effect (Kitagawa, Tokiwa, Fan, Raku, & Tokiwa, 2000; Pedersen, Wimmer, Emmersen, Degn, & 

Pedersen, 2002; Walsh, Bombyk, Wagh, Bingham, & Berreau, 2009). We had two chemical 

shifts for the sixth proton in glucose indicating the alpha and beta conformation of the D-glucose 

(Roslund, Tähtinen, Niemitz, & Sjöholm, 2008). Similar NMR graph for glucose laurate and 

glucose hexanoate esters were obtained.  

We successfully obtained the purity of 95.50%, 98.97% of glucose palmitate and glucose 

laurate, respectively. Due to relatively high solubility of glucose hexanoate in both hydrophobic 
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and hydrophilic environment, it was not possible to purify the ester by solvent extraction. NMR 

data for glucose heanoate was obtained from reaction mixture rather than pure product. 

3.4.4 Contact angle on product surface 

Due to the low solubility of glucose palmitate in water, it was hard to measure the critical 

micelle concentration and surface tension; therefore, contact angle was measured for the esters to 

compare the relative hydrophobicity. The hydrophobicity is generally positively related to 

contact angle (Daffonchio, Thaveesri, & Verstraete, 1995) and reversely related to HLB value 

(Griffin, 1949). The contact angles and HLB values for glucose palmitate, glucose laurate, SP30, 

SP50 and PS750 were 98.6 (HLB 8.6), 93.6 (HLB 9.9), 76.9 (HLB 6), 44.8 (HLB 11) and 28.1 

(HLB 16) respectively. The contact angles of our products followed the trend: the longer alkyl 

chain of palmitic acid made glucose palmitate more hydrophobic.  The HLB values for these two 

products were calculated respectively according to the method of Griffin (1955). The HLB value 

indicates that both of the esters can perform as emulsifiers and wetting agents for oil-in-water 

system (value from 7-18, according to Griffin (1946)). Commercial SP50 and PS750 esters may 

have more function in detergent and solubilizing application because they had higher HLB value 

(Griffin, 1949). Overall, the larger the contact angle the ester had, the lower the HLB value they 

were, except that SP30 had lower HLB value than glucose palmitate but it had lower contact 

angle than the other. 

3.4.5 Emulsion stability of esters 

The emulsion stability index (ESI) for esters are shown in Figure 3.3. Glucose esters were 

not water-soluble and they stayed on top of aqueous phase; whereas, sucrose esters were 
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dispersible but not soluble. Glucose esters demonstrated stabilizing effect compared to control 

treatment. The ESI increased as the concentration increased for all esters, which indicated lower 

concentrations of esters did not completely cover the oil surface to prevent creaming, the 

addition of more esters covered more surface area so the creaming process were retarded. At low 

concentrations of 0.01% for glucose palmitate and glucose laurate, the ESI values (171.4, 178.0 

respectively) were slightly higher than control treatment (138.8). At medium concentration of 

0.1%, glucose palmitate ESI (315.3) was twice as much as control, whereas glucose laurate ESI 

(163.4) did not increase compared to 0.01%. At 0.5%, glucose palmitate again showed stronger 

stabilizing effect (ESI 664.7) than glucose laurate (460.8). These data show that glucose 

palmitate had better stabilizing effect compared to glucose laurate. One reason for this could be 

the stronger hydrophobic interactions by longer alkyl chains in the molecule with each other and 

with oil droplets, which can form a more compact structure than glucose laurate (Ferrer, 

Comelles, Plou, Cruces, Fuentes, Parra, et al., 2002).  

For commercial sucrose esters, similarly, the ESI increased as the concentration 

increased. Compared with glucose esters, the sucrose esters had better stabilizing effect since the 

ESI were higher than those of in-house glucose esters at every concentration. Particularly, at 

0.5%, the ESI were significantly higher (1351.8, 1212.5, 1492.3 for SP30, SP50, PS750 

respectively) than glucose esters.  

3.4.6 Emulsion droplet size distributions 

Droplet distribution and diameter parameters for control, glucose palmitate, glucose 

laurate, and sucrose esters SP30 are presented in Figure 3.4 and Table 3.2 respectively. It was 

obvious for control and glucose esters that the distribution had undergone from single-modal to 

bio-modal or tri-modal change during 7-day storage, indicating the size were diverging into 
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bigger or smaller. The appearance of the peaks to the right side of the distribution indicated the 

presence of droplets that have not been completely covered by the surfactants have experienced 

coalescence (McClement, 2004a). The sucrose esters emulsified systems were relatively stable as 

the distributions were bio-modal or tri-modal throughout. Only one for the sucrose esters is 

presented because the distribution of the patterns were similar.    

 Mean and standard deviation of the droplet diameters for each treatment for 7-day time 

points are reported in Table 3.2; for multiple comparison, data were transformed to a natural log 

scale to fit the normal distribution. For all the diameters, both fixed effects (type of esters and 

time) had significant effects on change in droplet diameters (P<0.05). The interaction of 

treatment and time was also significant (P<0.05), meaning the diameters changed differently 

among all the treatments at different times.  From 0 h to 7th day, D[0.1] decreased gradually for 

control (5.2 μm to 2.0 μm), glucose palmitate (1.7 μm to 0.3 μm) and glucose laurate-stabilized 

emulsions (2.0 μm to 0.3 μm), respectively; multiple comparison of log-transformed data 

indicated that the change was significant (P<0.05). However, droplet size almost did not change 

for sucrose esters. This indicated that smaller droplets were decreasing in control and glucose 

esters and were undergoing coalescence. This can be confirmed by D[0.9] and volume mean 

diameter D[4,3] that the size of droplets for these three esters were increasing. However, they 

increased differently – for the volume mean diameter, control group experienced the greatest 

change (from 37.2-74.7 μm), glucose palmitate stabilized droplet changed from 18.2 um to 32.7 

um, glucose laurate stabilized droplet changed from 16.6 um to 47.4 um. This indicated that 

glucose palmitate and glucose laurate generated smaller droplets overall and they had stabilizing 

effect on droplet size, but could not completely prevent coalescence. Compared with glucose 

laurate, glucose palmitate is relatively more effective in stabilizing the oil-in-water emulsions. 
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The commercial sucrose esters can effectively prevent coalescence, as indicated by no significant 

changes for diameter parameters over time. Three mechanisms can explain the phenomenon we 

observed:  hydrophobic interaction (Ferrer, et al., 2002), steric stabilization (Nilsson & 

Bergenståhl, 2007) and adsorption on the interfacial surface (McClement, 2004b). Between 

glucose palmitate and glucose laurate, the former has longer alkyl chain, likely with the stronger 

hydrophobic interaction with oil droplets resulting in larger area coverage on the droplet to 

prevent coalescence. Also, the bigger molecule of glucose palmitate has stronger steric hindrance 

that prevent droplet from aggregating.  For sucrose esters, both steric hindrance and adsorption 

contribute to the better stabilization effect. Sucrose esters has bigger size because the presence of 

a fructose moiety in addition to glucose, meanwhile the presence of more hydroxyl group made it 

easier to solubilize in the continuous phase and easier to adsorb at the interface, whereas glucose 

esters had much lower solubility in the continuous phase, their adsorption at the interface were 

much slower. 

3.5 Conclusion 

Glucose-fatty acid monoesters were successfully synthesized in tert-amyl butanol and 

DMSO mixture solvent system in lipase catalyzed reactions with high level of conversion. 

Products were purified with solvent extraction. Synthesized and commercial esters were 

compared for emulsion capabilities. Glucose esters stabilized oil droplets to some extent, but 

could not completely prevent coalescence compared to commercial sucrose esters. The relatively 

smaller sizes of glucose esters and low aqueous solubility can explain their difference of 

emulsifying property.  
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Fig 3.1 Conversion percentage of palmitic acid (a), lauric acid (b) and hexanoic acid (c) during 48 h. Lines with diamond, square, triangle and 

cross represents molar ratio of 3:1, 2:1, 1:1 and 1:3 of fatty acid/glucose respectively. Standard deviations are shown
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Fig 3.2 Heteronuclear multiple bond correlation (HMBC) of reaction mixture of palmitic acid (PA) and 

glucose. The horizontal and vertical axis indicate 1H proton and 13C chemical shift (ppm) respectively. 

The interaction of proton of C6 of glucose ring with the carbonyl carbon demonstrated ester bond has 

been formed. The ester bond also caused the α-carbon (the one next to the carbonyl carbon) chemical shift 

to the higher field. 
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Fig 3.3 Emulsion stability index of glucose esters and sucrose esters. Mean value and standard deviation are shown. 
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                                              a                                                                                                       b                                                       

                           

                                           c                                                                                                                      d                                                                           

Fig 3.4 Droplet size distribution of emulsions of control treatment (a), glucose palmitate (b), glucose laurate (c), sucrose ester SP30 (d) at 0 h, 6th 

h, 24th h, 3rd day, 7th day
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Table 3.1 Initial reaction rate (μmol/min*g) and substrate solubility (mM) 

Ratio of 

fatty 

acid/glucose 

PA initial 

conversion rate 

(μmol/(min ∙ 

g)) 

Initial 

sugar 

solubility 

(mM) 

PA 

concentration 

(mM) 

LA initial  

conversion 

rate  

(μmol/(min ∙ 

g)) 

Initial 

sugar 

solubility 

(mM) 

LA 

concentration 

(mM) 

HA initial  

conversion 

rate  

(μmol/(min  

∙g)) 

Initial  

sugar 

solubility(mM) 

HA 

 

concentration  

(mM) 

3:1 9.6 a 16.9 c 243.7 a 7.2 a 21.1 b 259.6 a 11.8 a 26.2 a 235.2 a 

2:1 4.8 b 18.3 bc 158.0 b 5.3 a 22.5 b 178.3 b 3.8 b 22.8 a 146.5 b 

1:1 3.3 b 21.0 b 74.3 c 2.2 b 21.6 b 103.8 c 2.3 b 28.1 a 75.5 c 

1:3 5.2 ab 28.2 a 72.9 c 2.6 b 33.6 a 103.6 c 2.7 b 30.5 a 74.4 c 

PA- palmitic acid, LA- lauric acid, HA- hexanoic acid. Different letters indicate significantly difference in a row (P<0.05).  
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Table 3.2 Diameter summary of droplet size distribution 

 

 

Mean value and standard deviation of diameters are shown in the table. For data analysis, data were transformed to a log scale to fit a normal 

distribution.

  D[0.1] D[0.5] 

  0h 6h 24h 3d 7d 0h 6h 24h 3d 7d 

Control 5.2±1.2 1.2±0.3 1.2±0.1 2.3±1.2 2.0±2.0 26.8±4.6 10.4±6.5 58.0±28.3 65.5±41.9 17.1±2.2 

GP 1.7±0.1 0.6±0.1 0.6±0.0 0.4±0.1 0.3±0.0 6.6±0.5 2.4±0.1 2.5±0.1 2.8±0.3 2.6±0.8 

GL 2.0±0.3 0.4±0.1 0.4±0.1 0.4±0.0 0.3±0.0 9.8±0.8 2.4±0.3 2.6±1.0 5.9±4.2 3.1±1.2 

SP30 0.4±0.1 0.3±0.1 0.4±0.0 0.3±0.1 0.3±0.0 6.4±1.8 4.7±2.4 8.3±2.7 6.9±2.3 7.1±2.0 

SP50 0.3±0.1 0.3±0.0 0.3±0.0 0.2±0.0 0.3±0.1 5.4±0.8 2.8±1.4 4.3±2.1 2.1±1.4 4.5±2.8 

PS750 0.5±0.2 0.3±0.0 0.3±0.1 0.3±0.0 0.2±0.0 4.7±2.1 1.3±0.4 4.5±1.4 8.1±3.5 4.1±1.0 

           

  

 

 

D[0.9] D[4,3] 

  0h 6h 24h 3d 7d 0h 6h 24h 3d 7d 

Control 83.2±15.3 201.0±3.6 232.0±24.1 314.1±91.4 210.7±55.3 37.2±6.8 58.5±6.7 94.6±17.3 124.1±34.2 74.7±17.5 

GP 34.1±4.1 20.6±22.1 148.5±93.5 91.3±23.6 99.5±96.7 18.2±4.8 17.8±6.4 42.3±29.2 23.7±5.8 32.7±30.4 

GL 36.8±2.8 35.5±41.5 117.6±30.0 172.5±17.0 160.5±34.2 16.6±1.5 21.7±10.1 32.5±9.2 57.2±10.6 47.4±12.3 

SP30 23.2±4.0 26.1±5.6 30.9±4.8 24.0±6.6 25.9±3.1 8.1±1.6 5.2±3.3 6.9±2.0 5.5±5.0 6.4±5.9 

SP50 19.3±5.1 12.9±6.0 17.4±0.6 15.3±1.6 15.2±1.6 10.3±1.7 11.1±2.0 17.7±0.8 12.0±0.8 17.0±1.6 

PS750 24.4±7.6 22.5±6.8 29.8±3.1 64.1±57.2 34.5±10.1 10.1±4.8 6.6±2.4 10.7±1.0 21.9±17.9 12.9±3.9 
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4.1 Abstract 

 

The antimicrobial effects of some biobased surfactants sugar fatty acid esters, surfactin, 

and fatty acyl glutamic acid (FA-glu) on two food-borne pathogens were investigated. The 

possible mechanism of antibacterial action of FA-glu on bacterial cells was studied in-vitro. Of 

all the biosurfactants tested, FA-glu was the most water-soluble. The minimum inhibitory 

concentration (MIC) of glucose laurate monoester and FA-glu for L. monocytogenes and E. coli 

O157:H7 were 6.5 mg/mL and 25 mg/mL, respectively. FA-glu caused cellular leakage and 

surface damage in E. coli O157:H7, and rough surfaces in L. monocytogenes. Further 

investigation with artificial cell membrane phospholipids (PLs) indicated that interaction with 

FA-glu decreased PLs’ gel-to-fluid phase transition temperature and disrupted the cooperativity 

of the bilayer structure. Exposure of bacteria to FA-glu resulted in release of cellular 

phospholipids. These findings suggested that antimicrobial effect of glucose fatty acid esters was 

mailto:kren@iastate.edu
mailto:lamsal@iastate.edu
mailto:Lamsal@iastate.edu
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limited by their low aqueous solubility and FA-glu inhibits bacteria by disrupting their cell 

membranes. 

4.2 Importance 

The biobased surfactants, which were made from renewable biological  sources and 

produced by lipase and microbial fermentation (by Bacillus subtilis), were studied for their 

inhibitive properties against three foodborne pathogens. Two types of biosurfactants: glucose 

laurate and fatty acid glutamic acid (FA-glu) at the concentrations of 22.1 mg/mL and 25 

mg/mL, respectively, were found to inhibit the bacteria growth during 24 h. The mechanism of 

FA-glu’s antimicrobial properties is related to its interaction with the bacterial cell membrane- at 

low concentrations, it can disorganize the cell membrane structure, and at higher concentrations, 

it can dissolve important components in the cell membrane to cause cellular leakage. The study 

revealed mechanisms of biosurfactants’ antimicrobial properties, and will provide useful 

information to food and detergent industry regarding cleaning/ disinfectant development. 

Key words: biosurfactant, fatty-acyl glutamic acid; surfactin, antibacterial mechanism 

4.3 Introduction 

Bio-based surfactants are chemicals derived from biological or renewable agricultural 

sources 1 and have potential for use in food, detergent, cosmetic, paints, coatings and 

pharmaceutical industry 2, 3. The use of bio-based products lowers the risk of the environment 

pollution and reduces petroleum usage 2. There are several types of bio-based surfactants: 

glycolipid and lipopeptide produced by living cells via fermentation, sugar-, polyol- and amino-

based surfactants produced by enzymatic synthesis, and pulmonary surfactants that play 

important roles in physiological process 4. Apart from excellent surfactant activity, antimicrobial 

behavior was also reported for various biosurfactants. For example, sugar fatty acid ester such as 
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fructose laurate synthesized by Candida antarctica B lipase was shown to suppress the growth of 

Streptococcus mutans in brain heart infusion broth 5, sucrose esters inhibited growth of E. coli, 

Bacillus cereus and Saccharomyces cerevisiae in liquid media 6, and lactose monolaurate 

inhibited several strains of L. monocytogenes in dairy products 7. The mechanism for sugar-fatty 

acid esters’ antimicrobial properties is not reported extensively due to their limited aqueous 

solubility 8, even though their chemical structure might be an important factor for observed 

antibacterial effects 9. Other biosurfactants such as glycolipid (rhamnolipid) and lipopeptide 

(surfactin) have been studied for their antibacterial effect on some foodborne pathogens. 

Rhamnolipid exhibited bacteriostatic effect on L. monocytogenes at the concentration range of 

78.1μg/mL to 2500 μg/mL 10. Rhamnolipid and surfactin reduced pathogen biofilm formation by 

influencing bacterial surface hydrophobicity, electron donor properties and food-contact surface 

hydrophobicity 11. Several inhibition mechanisms for antibacterial properties of biosurfactants 

were studied such as disruptive interaction with artificial membrane lipids 12, 13 and cell-leakage 

14. Other possible mechanisms for inhibition, such as interaction with cell wall and proteins from 

different cell fractions have not been explored. 

FA-glu is a novel fatty acyl biosurfactant with only one amino acid esterified to 

hydrophobic fatty acid chain, and a variant of surfactin that has 7 amino acids (in a cyclic 

peptide) as Fig 4.1 shows 15. It is produced by a genetically modified strain of Bacillus subtilis 

that normally produces surfactin. FA-glu is composed of a β-hydroxyl fatty acid (chain length 

ranging from C11-17, usually myristic) linked to a glutamate molecule 15. FA-glu has much 

better water solubility (312 mM) and a very low critical micellar concentration (1.3 mM) 15 due 

to the presence of just one amino acid.  Since surfactin inhibits bacterial biofilm formation 11, we 

hypothesized that FA-glu, based on the better aqueous solubility than surfactin, may also possess 

https://en.wikipedia.org/wiki/Fatty_acid
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antibacterial properties. In our previous study with enzyme-synthesized glucose fatty acid esters 

(glucose palmitate and glucose laurate), which have shown to possess emulsion stabilizing 

properties 16.  Since the above reported sucrose esters showed antimicrobial properties, glucose 

fatty acid esters with similar structures might also possess antimicrobial characteristics  which 

broaden their applicability in various food systems, including clean labels. 

Accordingly, the objectives of this study were to 1) evaluate and compare the 

antimicrobial effect of some sugar-fatty acid esters, surfactin, and FA-glu on three common food 

borne pathogens, and 2) to study, in-vitro, the mechanisms of antibacterial action of FA-glu 

against bacterial cell membranes. The hypothesis tested was that suppression of bacterial growth 

by these biobased surfactants results from their interaction with the cell membranes and leakage 

of cellular constituents. Biosurfactant effects on artificial cell membrane phospholipids were 

evaluated to explain membrane interactions.  

4.4 Materials and Methods 

4.4.1 Bacterial cultures and reagents 

Three common food-borne pathogen strains, Listeria monocytogenes Scott A NADC 

2045 serotype 4b, Salmonella Enteritidis ATCC 13076, and E. coli O157:H7 FRIK125 were 

obtained from USDA/ National Animal Disease Center (Ames, IA), American Type Culture 

Collection, and Food Research Institute University of Wisconsin-Madison, respectively.  Brain 

heart infusion (BHI) broth was purchased from Fisher Scientific (Fair Lawn, NJ). Glucose 

palmitate monoester (6-O-Palmitoylglucopyranose) and glucose laurate monoester (6-O-

Lauroylglucopyranose) were synthesized in-house (Section 2.2). Sucrose ester (PS750, HLB 16) 

with 75% monoester content were donated by a commercial company. Lysozyme, mutanolysin 

and benzonase nuclease were purchased from Sigma-Aldrich (St. Louis, MO). Fatty acyl 
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glutamic acid was donated by Modular Genetics Inc. (Wooster, MA).  Some of the surfactin 

(95% purity) were prepared in-house via fermentation with Bacillus subtilis T1651 on sugar-

based media 17, whereas, others were purchased from Sigma (≥ 98% purity). Phospholipids 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-

phosphorylglycerol sodium salt (DMPG) and 1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPE) were purchased from Avanti Polar Lipids, Inc (Alabaster, 

Alabama). 

4.4.2  In-house preparation of bio-based surfactants sugar-fatty acid esters and surfactin 

Glucose palmitate and glucose laurate monoesters were synthesized with lipase in tert-

butanol and DMSO mixture solvent and purified by solvent extraction following procedures 

previously reported 16. Palmitic acid and lauric acid were reacted with glucose at the ratio of 0.3 

mM: 0.1 mM in 10 mL solvent mix (80% dimethyl sulfoxide and 20% tert-amyl alcohol). One 

gram of molecular sieves and 0.25 g immobilized lipase were added into the system. After 

reacting for 48 h, the system was centrifuged to obtain the supernatant, which was placed in a 

fume hood to evaporate the tert-amyl alcohol. Water (approximately 10:1 v/v of solvent) was 

added to the remaining solvent to precipitate the fatty acid residue and esters. The resulting 

slurry was filtered to obtain white solid. The solid was washed with methanol for 3-4 times to 

dissolve free fatty acid and obtain purified glucose esters.  In-house surfactin was prepared from 

15-L fermentation broth using glucose as growth medium for Bacillus subtilis T165117. The in-

house surfactin purification process briefly was as follows: 3 M hydrochloric acid was added to 

permeate of ultrafiltered (500,000 kDa) fermentation broth to decrease the pH to 2 to precipitate 

surfactin, the resulting slurry was mixed at 4°C for 3-4 h and was centrifuged at 12,000 g for 15 

min at 4°C. The precipitate was then washed by excess amount of water and was dried properly. 
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The dried precipitate was dissolved in methanol, followed by the addition of ammonium 

hydroxide to adjust the pH to 8.5-9.0. The solution was centrifuged at 12, 000 g for 15 min at 

4°C and the supernatant was collected. This was repeated two more times, and the supernatant 

containing surfactin was then freeze-dried and stored at 4°C until used. 

4.4.3 Bacterial growth inhibition percentage and minimum inhibitory concentration. 

Growth curves for three common food-borne pathogens L. monocytogenes, S. enteritidis 

and E. coli O157:H7 FRIK125 were obtained using a Bioscreen C turbidometer (Growth Curves 

USA, Piscataway, NJ). Bacterial stock cultures were stored frozen (-80°C) and activated 

separately in BHI broth (35°C, 24 h).  Two consecutive 24-h transfers of each working culture in 

fresh BHI (35°C) were prepared prior to each experiment. Each bacterial culture was diluted 

100-fold in fresh BHI to obtain a cell concentration of 107 CFU/mL and 30-μL aliquots of that 

diluted culture were used to inoculate 3-mL volume of BHI broth containing different 

concentrations of surfactants. Thoroughly mixed aliquots (250 μL each) of the inoculated broth 

were transferred to a 100-well microtiter plate and incubated (37 ºC) in the Bioscreen C 

turbidometer. The absorbance (at 600 nm) of the broth was recorded every 30 min for 24 h. 

Since the glucose esters were only partially soluble in BHI broth, all the bio-based surfactants 

were dissolved in dimethyl sulfoxide (DMSO) first and then placed in BHI broth to improve 

biosurfactants’ solubility. The blank control contained broth only (B), the negative control 1 

(NC1) was broth and 5% DMSO, negative control 2 (NC2) was broth with added 5% DMSO and 

biosurfactants. Positive control 1 (PC1) was inoculated broth, positive control 2 (PC2) inoculated 

broth with 5% DMSO, and positive control 3 (PC3) was inoculated broth with 5% DMSO and 

biosurfactants. The average absorbance difference between PC1 and B, PC2 and NC1, PC3 and 

NC2, respectively, gave the relative influence of broth, 5% DMSO, and surfactants on bacterial 
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growth. Each treatment had 3 microplate wells for measurements. To compare the surfactant 

treatment groups with non-treated groups, the growth inhibition effect was calculated based on 

Equation 16. To compare the growth at 24 h with 0 h for a given treatment, another parameter: 

growth absorbance difference was used, which was calculated based on Equation 2.  

Inhibition effect (%) = 
𝑂𝐷 (𝐷𝑀𝑆𝑂24)−𝑂𝐷 (𝑠𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡24)

𝑂𝐷(𝐷𝑀𝑆𝑂24)
                                          Equation 1 

where, OD (DMSO24): difference in optical density at 600 nm between PC2 and NC1. 

The values for PC2 and NC1 were averaged from three plate well measurements.  

OD (Surfactant24): difference in optical density at 600 nm between PC3 and NC2. The 

values for PC3 and NC2 were averaged from three plate well measurements. 

Growth absorbance difference = OD (24 h) – OD (0 h) ……..Equation 2 

where, OD (24) is the OD of a surfactant treatment at 24 h, and OD (0) is the OD of the 

surfactant treatment at 0 h. 

The minimum inhibitory concentration (MIC) was defined as the lowest biosurfactant 

concentration that prevented bacterial growth for first 24 h at 37 ºC in BHI18. 

4.4.4 Solubility of biosurfactants in broth: 

MIC of biosurfactants in broth would be influenced by their solubility, as they were not 

100% pure, and solubility varied. The actual amount of glucose palmitate, glucose laurate, and 

PS 750 solubilized in the BHI broth was measured for their partial solubilities. Different amount 

of biosurfactants were dissolved in DMSO and were added into the broth. The broths were then 

incubated at 37°C for 24 h20, centrifuged, residual solids were collected, and dried at 60°C in a 

vacuum oven until the subsequent final weights were within 0.0001 g.  The differences of the 
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weights between the solid residue after drying and the amount that was added into the broth were 

calculated as the solubility. The dissolved concentration of the sugar-fatty acid esters in the broth 

was reported as biosurfactants concentrations in the discussions. 

4.4.5 Mechanistic study of biosurfactant-pathogen interaction:   

 Mechanistic study of interaction between biosurfactants and pathogens was carried out 

using FA-glu with E.coli O157: H7 and L. monocytogenes due to FA-glu’s excellent aqueous 

solubility. The analytical tests are described below.  

4.4.5.1 Cell morphology after biosurfactant treatments.  

The bacterial cell surface morphology after FA-glu treatment was observed using 

transmission electron microscopy (TEM) as described by Moghimi and others 21. Briefly, L. 

monocytogenes or E. coli O157: H7 cells (1010 CFU) in10 mL of BHI broth were harvested by 

centrifugation (4,000 x g for 10 min, 4 ºC) and washed twice in phosphate buffer solution (PBS, 

pH 7.3). The pelleted cells were collected and incubated with 10 mL of 5 mg/mL FA-glu 

(treatment) and PBS buffer (control) for 4 h at 37°C. Cells were then washed with PBS buffer 

and harvested by centrifugation as previously described.  The pelleted cells were washed twice 

with PBS solution and fixed in 0.1 M cacodylate buffer (containing 2% paraformaldehyde and 

3% glutaraldehyde) and stained by 2% uranyl acetate in preparation for observation by TEM.  

An aliquot (3 μL) of that solution was applied to a carbon film grid and stained with 2% uranyl 

acetate. Images were captured using a JEOL 2100 200Kv scanning and transmission electron 

microscope (Japan Electron Optics Laboratories, USA, Peabody, MA).  

4.4.5.2 Leaked cell constituents   

Absorbance at 260 nm and at 280 nm were used to measure nucleic acid (A260) and 

proteins (A280) that leaked from the bacterial cells treated with aqueous FA-glu., respectively 22. 
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Cells were incubated with FA-glu solution at 5 mg/mL and 10 mg/mL for 4 h at 37°C and were 

harvested by centrifugation as described in Section 2.3 and the absorbance of the supernatant 

was measured. Controls for them were cells incubated with PBS solution (blank control) and FA-

glu solutions at 5 mg/mL and 10 mg/mL that were not inoculated with cells. The absorbance of 

these controls were also measured at these two wavelengths. 

4.4.5.3 Cell protein fractionation and protein electrophoresis 

The protein from centrifuged (cell-free) solution of FA-glu incubated with cells, cell wall 

protein, cell membrane protein and cytoplasmic protein were fractionated according to methods 

described in a previous study22.  Briefly, L. monocytogenes and E. coli O157:H7 were sub-

cultured in 50 mL BHI broth for 24-36 h to obtain a final cell concentration of ~109 CFU/mL. 

Cells were harvested by centrifugation (6,200 x g, 10 min, 23°C), washed with PBS buffer and 

incubated with 50 mL of 5 mg/mL FA-glu in PBS buffer for 4 h at 37°C. The cells from 

surfactant-free control were incubated in 50 mL PBS solution. After incubation, the supernatants 

were collected by centrifugation (6200 x g, 15 min, 23°C), and filter-sterilized using 0.22 μM 

syringe filter. Leaked cellular constituents were isolated by freeze-drying the supernatant and 

hydrated with 400 μL of 1 M Tris-HCl (pH 8.8).  Protoplasts or spheroplasts were generated by 

incubating pelleted cells in 0.1 mL sucrose wash buffer (SWB, 10 mM Tris-HCL pH 6.9, 10 mM 

MgCl2 and 500 mM sucrose) containing 10 mg/mL lysozyme and 2,500 U/mL mutanolysin for 2 

h at 37°C. The cell wall protein and protoplasts/spheroplasts were then separated by 

centrifugation at 6,200 x g for 15 min at 4°C to obtain supernatant for protein analysis. The 

pelleted protoplasts/spheroplasts were washed in 1 mL SWB and suspended in 200 μL lysis 

buffer (100 mM Tris-HCl pH 7.5, 10 mM MgCl2, and 362 U benzonase nuclease).  Cell lysis 

was achieved by exposure of cells to three freeze-thaw cycles and the samples were subjected to 
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centrifugation as previously described. The supernatant and pellet with cytoplasmic protein and 

cell membrane proteins, respectively, were suspended in 0.1 mL TRIS-EDTA buffer (10 mM 

TRIS-HCL pH 7.9 and 1 mM EDTA Na2). All protein fractions were stored at -20°C and 

estimated by Bradford assay. Around 11 to 60 μg protein samples were loaded for protein 

electrophoresis and silver staining was employed.  

4.4.5.4 Biosurfactant interaction with artificial cell membrane phospholipids  

The interaction of FA-glu with in-vitro membrane phospholipids was determined by 

differential scanning calorimetry12. DMPC, DMPG and DPPE were chosen as representative cell 

membrane phospholipids.  Three micromoles of phospholipid were mixed with FA-glu at 0%, 

1%, 2.1%, 2.5%, 5.1% and 12.5% (mol/mol), dissolved in methanol/chloroform (2:1 v/v), dried 

overnight under fume hood and dried further under vacuum for 2 h. The mixtures were hydrated 

with 40 μL 150 mM NaCl, 0.5 mM EDTA, 20 mM TRIS (pH 7.4) above their phase transition 

temperature (24°C for DMPC, 23°C for DMPG and 63°C for DPPE). For DPPE, the mixtures 

were heated (70°C) for 1 hr and were sonicated at 20% amplitude for two 3-min periods with a 

3-min resting period23. Phospholipid vesicles (15 μL or 20 μL) were transferred to aluminum 

calorimetry pan sealed and set for 24 h to reach equilibrium. Scans were conducted in a Perkin-

Elmer DSC7 differential scanning calorimeter. For DMPC and DMPG, samples were heated 

from 10°C to 50°C, DPPE were heated from 10 to 80°C, with heating rate of 10°C/min. For each 

treatment, at least three samples were scanned.  

4.4.5.5 Identification of phospholipid by 31P nuclear magnetic resonance (NMR) and mass 

spectrometry  

The 31P NMR and mass spectrometry were used to detect the presence of phospholipid 

and their types in the FA-glu treated cell-free supernatants. Controls that were extracted by 
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chloroform and methanol were prepared according to the method described by Bligh and Dyer 24. 

Bacterial cells collected after 18-24 h incubation in 50 mL BHI broth (37 ºC) were suspended in 

5 mL PBS solution and 4 mL chloroform and 2 mL methanol were added. The mixture was 

placed in shaker incubator for 20 min and then subjected to centrifugation (6,200 x g, 15 min at 

room temperature) to obtain the lower organic phase. For treated cells, 3 mL chloroform and 1.5 

mL methanol were added to 2 mL cell-free supernatant and after 20 min of incubation, the lower 

organic phase were collected. The samples were scanned in the negative mode from 1000-1500 

Daltons using an Agilent Quadrupole Time-of-Flight (QTOF) mass spectrometry.  For 31P NMR 

test (Bruker Avance III 600, Billerica, MA and Karlsruhe, Germany), samples for mass 

spectrometry were dried in the fume hood and dissolved in deuterated chloroform.   

4.4.5.6 Statistical analyses 

Statistical tests were conducted using SAS 9.4 software (SAS Institute Inc., Cary, NC). 

Proc GLIMMIX test was used to determine significant difference between treatments (P<0.05). 

At least three measurements were taken for Bioscreen tests, DSC and leakage content 

determination.  

4.5 Results and Discussion 

4.5.1 Microbial growth and inhibition by biosurfactants 

Since some of our biobased surfactants had limited solubility in the BHI broth, DMSO 

was used as a co-solvent to improve the solubility. Preliminary experiments indicated that 5% 

(v/v) DMSO in BHI broth did not adversely affect bacterial growth. Although increase in 

absorbance of all three bacterial cultures in broth with added DMSO was slightly less than that of 

controls (Fig 4.2a, 4.2b), absorbance in broth cultures with DMSO reached a comparable level 

with the non-DMSO controls at 24 h. Moreover, DMSO is used as a cell preservative25, 
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therefore, regarded as a non-detrimental medium for bacteria while acting as a solvent for 

hydrophobic substances. The biosurfactants were dissolved in pure DMSO and diluted in BHI to 

achieve the 5% (v/v) DMSO as well as the desired surfactant concentration. Figure 2a and 2b 

shows growth of the pathogens in BHI with or without 5% (v/v) DMSO, and with select 

biosurfactants.  Only representative growth patterns are presented since several graphs for the 

three pathogens showed similar trends.   

Gram-positive (L. monocytogenes) and Gram negative (S. Enteritidis and E. coli 

O157:H7) exhibited differences in resistance to glucose palmitate.  Due to the limited solubility 

of glucose palmitate, the highest concentration tested while minimizing insoluble material was 

0.56 mg/mL. None of the concentrations of glucose palmitate tested fully inhibited the growth of 

the three microorganisms as shown in Table 4.1. It was obvious that the inhibition percentages 

did not reach 100%. The concentrations 0.51 mg/mL and 0.56 mg/mL achieved the highest 

inhibition, with lower concentrations showing lower inhibitions during the incubation period, 

thus the growth curves are not presented.  

Glucose laurate was effective against L. monocytogenes at 6.5 mg/mL, in that, it inhibited 

the growth of this pathogen after 5 h with absorbance remaining unchanged for 24 h (Fig S4.1a). 

Similar results were obtained for S. Enteritidis and E. coli O157:H7 (growth curves not shown). 

Although the microbial growth inhibition was less than 100% (91%, 85%, and 74% for L. 

monocytogenes, S. Enteritidis  and E. coli O157:H7, respectively; Table 1), these results only 

demonstrate the effectiveness of glucose laurate  treatments compared to controls in suppressing 

bacteria at the 24th h, which did not completely reflect how it grew since the beginning of 

inoculation. In this respect, the absorbance differences between 0 h and 24 h for a treatment were 

used to evaluate the biosurfactants’ antimicrobial effectiveness (Table 4.1). The smaller the 



www.manaraa.com

85 
 

 

 

difference in absorbance, the stronger the inhibitory effect on bacterial growth, indicating 

effective antimicrobial behavior by biosurfactants. Glucose laurate at 6.5 mg/mL completely 

prevented bacterial growth (difference being -0.03, -0.05 and -0.01 for L.monocytogenes, S. 

Enteritidis and E. coli O157:H7, respectively). In this regard 6.5 mg/mL was the MIC of glucose 

laurate for all three pathogens tested, because it inhibited the bacteria for the first 24 h. Exposure 

of L. monocytogenes to the lower glucose laurate concentrations of 0.13 mg/mL and 0.085 

mg/mL resulted in an initial increase in absorbance at 5 h (A = 0.82) and 10 h (A = 1.09), 

respectively, followed by a drastic decrease in absorbance to 0.02 and 0.19, respectively, at 24 h 

(Fig S4.1b). This general trend was also observed for S. Enteritidis and E. coli O157:H7. Results 

showed inhibition percentage for L. monocytogenes, S. Enteritidis  and E. coli O157:H7, 

respectively, as 108%, 133% and 130% (Table 4.1), and 24 h absorbance differences as -0.27, -

0.22 and -0.51 (Table 4.1, values in parenthesis) when treated with glucose laurate at 0.13 

mg/mL. This concentration, however, was not chosen as the MIC, although theoretically it fit the 

definition of MIC stated in previous reports.  Those same reports referred to MIC as the lowest 

concentration at which the absorbance did not rise significantly compared with negative control, 

and it only described the absorbance difference between the start and end point of incubation 

time. In this regard, no consideration was given to substantial changes in absorbance that can 

occur between those two time points. From a practical food safety standpoint, the MIC should be 

the lowest concentration of the antimicrobial agent that inhibits bacterial growth throughout the 

entire incubation period.  Higher concentrations of glucose laurate (2.8 mg/mL and 0.62 mg/mL) 

suppressed growth of all three pathogens after about 7 h; however, the organisms continued to 

grow slowly later on. Other lower concentrations were not effective.  
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A comparison between growth profiles for glucose palmitate and glucose laurate treated 

cells reveals that glucose laurate was more effective biosurfactant against all three bacteria. This 

may be related to the fatty acid moiety in the sugar esters, lauric acid, which has been 

demonstrated to be the most effective C6-C18 free fatty acids against gram-negative and positive 

bacteria26. It also inhibited a bacterium that causes skin inflammation27, and was effective against 

other three Gram-positive cocci28.  

For the commercial sucrose ester PS750, soluble concentration of 2.26 mg/mL (amount 

put in the broth 4.15 mg/mL) inhibited bacterial growth (70%, 52% and 51% inhibitions for L. 

monocytogenes, S. Enteritidis and E. coli O157:H7, respectively), that were lower at lower 

concentrations (Table 4.1). Since it was not very effective in inhibiting bacteria compared to our 

in-house synthesized glucose laurate, we did not pursue further MIC studies on this 

biosurfactant.   

Surfactin has been reported to inhibit biofilm formation11, 29, however, reported studies on 

its direct inhibitory effect on foodborne pathogens are scarce. Contrary to the results expected, 

in-house surfactin at 5, 10 and 15 mg/mL led to an unexpected increase in absorbance between 5 

h and 10 h, followed by a dramatic drop, possibly indicating surfactin-induced cell lysis (Fig 

S4.1b). The surfactin used at higher concentrations (5, 10, 15 mg/mL) were from our in-house 

preparation and was lower in purity (95%); we speculate that possible impurities likely to be 

residual metabolites from bacterial fermentation, might have supported bacterial growths during 

9-10 h for unexpected increase. Lower concentrations (0.005-0.1 mg/mL) did not show that 

pattern. The surfactin used for lower concentrations (0.005-0.1 mg/mL) were from Sigma (purity 

over 98%). In general, both in-house and commercial surfactin were much less effective by 24 h 

than glucose laurate, because the inhibition percentages in all the concentrations used were less 
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than 40% (Table 4.1). Consistent with our result, Nonejuie (2016)30 reported the commercial 

surfactin did not show any antibacterial activities. However, some other studies report surfactin 

to be quite effective. For example, Nobmann and others reported surfactin from various strains of 

Bacillus subtilis inhibited L.monocytogenes at relatively low concentrations (less than 0.3 

mg/mL). Magalhães and Nitschke10 demonstrated that the MIC to inhibit spores of B. cereus was 

only156.25 g/mL. These concentrations were much lower than those used in the present study. 

Various reasons could have contributed to the different outcomes: one reason is that surfactin is a 

composite mixture of its isomers, it is possible that not every structure of surfactin possessed 

antibacterial property. Therefore, different surfactin-producing bacteria may produce differently 

active surfactin. Moreover, the environmental parameters such as (such as pH, salt and methanol 

presence) varied among reported studies, which preclude meaningful comparison of results with 

present study. Due to the expensive price of surfactin, higher concentrations of surfactin were not 

tested for its MIC for 3 bacteria studied. 

Since the FA-glu had much better aqueous solubility compared to other bio-based 

surfactants tested, its inhibitory effect in 5% DMSO broth was studied. At 25 and 20 mg/mL, 

FA-glu in broth itself had better inhibition effect than in broth with 5% DMSO. The FA-glu 

concentration at 25 mg/mL in aqueous solution strongly inhibited the growth of L. 

monocytogenes and E. coli O157:H7, as indicated by the inhibition percentage 100% and 99%, 

respectively, and very small absorbance difference between 0 h and 24 h (0.04 and 0.07). The 

concentration at 20 mg/mL inhibited growth for up to 16 h; however, bacteria started to grow 

afterwards (Fig 4.2b). At 15 mg/mL, 10 mg/mL and 5 mg/mL, FA-glu in 5% DMSO broth had 

better growth inhibition effect than in broth alone, which could be due to the presence of DMSO, 

but none of these concentrations was bacteriostatic. For other concentrations, the lower they 
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were, the less inhibition they showed: 0.05 mg/mL and 0.1 mg/mL had almost no effect on the 

growth for 24 h. S. Enteritidis was the most resistant among the three pathogens studied, since its 

growth was not inhibited at the FA-glu concentrations studied. It was apparent that FA-glu had 

better antibacterial effect than surfactin (at 5, 10, 15 mg/mL) against all three pathogens.  

The minimum inhibitory concentrations evaluated for glucose laurate and FA-glu were 

6.5 mg/mL and 25 mg/mL, respectively. Although glucose laurate exhibited a greater 

antibacterial effectiveness, its lower solubility in aqueous solution restricts its use in practical 

applications; therefore, the mechanistic study for microbial inhibitory effect was only conducted 

for more soluble biosurfactant FA-glu. L. monocytogenes and E. coli O157:H7 were treated with 

5 mg/mL FA-glu in studying the possible inactivation mechanism(s) and results compared with 

those of with PBS-treated control. These two organisms were chosen for being foodborne 

pathogens that are Gram positive and Gram negative bacteria, respectively.  

4.5.2 Cell surface morphology  

Figures 4.3a and 4.3b show the TEM images of the surface of FA-glu treated and control 

cells of L. monocytogenes and E. coli O157:H7, respectively. PBS-treated control E. coli O157: 

H7 cells (Fig 4.3a(1) and 4.3a(3)) had smooth surface and uniform color, while the biosurfactant 

treated cells seemed very distorted in shape with markedly rough surface and some electron 

dense material between the cells (Fig 4.3a(2) and 4.3a(4)), possibly indicating leaked materials 

from the cells.  Electron-dense particles or precipitates were reported around damaged bacterial 

cells in comparison to undamaged cells. Our results are consistent with those of a recent study on 

naturally derived surfactants, which showed that sophorolipid- and thiamine dilauryl sulfate-

treated E. coli O157:H7 cells were distorted with uneven surfaces. Those authors ascribed the 

observed alterations to cell membrane damage caused by biosurfactants treatments. Similar 
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morphological changes in bacterial cells were reported by other researchers. For L. 

monocytogenes control groups (Fig 4.3b(1) and 4.3b(3)), the cell surfaces were rather smoother 

and uniform, although some staining on cell the surface caused a bit darker appearance. The L. 

monocytogenes treated cells (Fig 4.3b(2) and 4.3b(4)) remained intact but the surface seemed to 

have several black specks, which might indicate that FA-glu caused morphological alterations to 

make the surface non-uniform. Unfamiliar triangles and round shapes were seen in TEM 

pictures, which most likely occurred for PBS salt crystals caused by vacuum effect prior to TEM 

examination. 

4.5.3 Spectrophotometry study of the leaked cellular constituents.  

The FA-glu solutions at 5 and 10 mg/mL had some absorbance by themselves without 

any cells; the increase in its concentration had increase in absorbance. For E. coli O157:H7 (Fig 

4.4a), the cell-free supernatant treated with FA-glu at 5 mg/mL had increased absorbance at both 

260 nm and 280 nm compared with no-cell blank control and FA-glu solutions. This indicated 

that those 260 nm – and 280 nm- wavelength absorbing substances were released from the cells 

exposed to FA-glu at 5 mg/mL, thus, strongly suggesting damage to the outer lipopolysaccharide 

membrane and the cytoplasmic membrane of E. coli O157:H7. Our results correspond another 

study which demonstrated the damaging effect of sophorolipids against the Pseudomonas 

aeruginosa membranes based on copious release of protein from treated cells.  For cells treated 

with 10 mg/mL FA-glu, there was a significant increase in A280 (but not A260) value of the 

supernatant compared to control 10 mg/mL FA-glu. Comparing the absorbance for cells treated 

at two concentrations, no significant increases at both wavelengths was observed, indicating 

increased absorbance at higher FA-glu concentration did not result from leakage of nuclei acid 

and proteins. 
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For L. monocytogenes (Fig 4.4b), the data had similar trend as those for E. coli O157:H7. 

Cells treated with 5 mg/mL FA-glu produced slightly higher absorbance in the cell-free 

supernatant at both wavelengths than control 5 mg/mL FA-glu solution; however, supernatant 

from cells treated with 10 mg/mL FA-glu did not result in significant absorbance increase when 

compared with FA-glu 10 mg/mL solution. Additionally, higher FA-glu concentrations did not 

cause more leakage. It is possible that the leaked constituents were in very small quantity and 

thus challenging to discern since the FA-glu by itself exhibited some absorbance. Based on these 

observation, silver staining was performed to determines the protein leakage from cells. 

4.5.4 Cell leakage and silver staining protein from different cell fraction 

Transmission electronic microscopy and spectrophotometry qualitatively confirmed the 

leakage from treated cells; however, constituent types and quantity was not verified. Therefore, 

fractionation of proteins was conducted for 1) protein in cell-free supernatant after incubation 

with cells with FA-glu, and 2) proteins from cell wall, cell membrane, and cytoplasm of bacteria 

with and without FA-glu treatment (5 mg/mL). These proteins were subject to silver-staining 

electrophoresis for their presence. The electrophoresis procedure was repeated three times, and 

representative figures that show common characteristics are presented in Fig 4.4a and 4.4b.  

For E. coli O157:H7, significant band profile differences were observed in cell-free 

supernatant, cell wall, and cytoplasmic fraction of treated and untreated microbial cells. 

Smearing occurred from the supernatant of treated cells, while almost no proteins were observed 

in untreated cells (data not shown). Considering the high absorbance at 280 nm from the 

spectrophotometry, the smearing was possibly caused by significant amounts of cytoplasmic 

components. More protein bands were observed in the cell wall fraction of treated cells than 

those from untreated cells (Fig 4.5a). Protein bands at around 55 kD, 73kD, 76 kD and 100 kD 
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that were observed in the control were not observed in fraction from treated cell wall. Sotirova et 

al 31 postulated that certain biosurfactants can interact with bacterial surface proteins and may 

cause removal of those proteins by solubilization. In the cell membrane fraction, no differences 

were seen in band types between control and treated cells, but the intensity of the band in the 

treated group was a little fainter, possibly indicating FA-glu binding of some of the membrane-

embedded proteins and causing them to detach from the membrane prior to fractionation. 

Proteins larger than 57.5 kD were not seen in the cytoplasmic fraction of treated cells suggesting 

that the larger proteins leaked out of the cells. In the smeared lane of cell leaked-content (not 

shown), some bands from 57.5-150 kD were observed, although not very distinct (indicated with 

arrows, Fig 4.5a), which likely represented those leaked cytosol proteins.  

For L. monocytogenes cells, several bands (around 75 kD, 55kD and 45 kD) were present 

in the supernatant from FA-glu treatment (Fig 4.5b). The leaked content was not as much as 

those observed for E. coli O157:H7, which can explain small and not significant absorbance 

difference observed in cell free FA-glu solution incubated with L. monocytogenes cells (Fig 

4.5b). For cytoplasmic protein content, proteins with larger than 75 kD were not observed in 

treated cells. As for cell wall fraction, no significant differences in protein were observed in 

treated and control cells. 

Based on the results of silver-staining electrophoresis, it can be said that FA-glu caused 

more leakage of cellular content for E. coli O157: H7 than L. monocytogenes. This difference 

might be explained by differences in cell wall (peptidoglycan) thickness of Gram positive and 

Gram negative bacteria which have 10 to 20, and 1 to 2 layers of peptidoglycans, respectively, 

with the thin Gram negative peptidoglycan located between the outer and inner membrane32. The 

thicker peptidoglycan in Gram positive bacteria with a large, rigid, mesh-like structure can 
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protect the cytoplasmic membrane and most likely acted as a barrier in minimizing FA-glu’s full 

interaction with the cytoplasmic membrane. 

4.5.5 In-vitro Interaction of FA-glu with artificial cell membrane  

The outer-membrane of E. coli O157:H7 has phospholipids (PL) that can be easily 

accessed by FA-glu. Two approaches were taken to determine how FA-glu interacted with cell 

membranes. In one, the DSC was used to determine the interaction of FA-glu with artificial cell 

membrane PLs; it was then followed by the detection of phospholipids in the treated cell-free 

supernatants. DPPE are the predominant PLs in E. coli cell membrane33 and 

phosphatidylglycerol is in higher amounts in L. monocytogenes than other bacteria22; 

Phosphocholine is a general essential PL in membranes thus DMPC was also chosen. The DSC 

transition temperature, peak broadness and enthalpy of the membrane phospholipids were 

measured and compared to demonstrate the influence of FA-glu incorporation on phospholipid.   

Interaction with FA-glu decreased the phase transition temperature of DMPC and 

resulted in a broader peak, as indicated by the T½; the melting temperature was around 23°C 

(Table 4.2, Fig S4.2).  Further addition (2.1%-12.5% mol/mol) of FA-glu decreased the phase 

transition temperature. Our results are consistent with similar research reporting the interaction 

of DMPC with surfactin13, antimicrobial peptide34 and α-tocopherol35. The decrease in melting 

temperature indicated perturbation in the acyl chain cooperativity by FA-glu; in other words, the 

outside molecule or “impurity” (FA-glu) distributed within the bilayer, affecting the van der 

Waals forces between the hydrocarbons, resulting in phase change of tightly packed hydrocarbon 

core into free-rotational chain at lower temperature13, 36. As reported in the literature, a small 

molecule like FA-glu could get buried in the hydrocarbon core, interacting with C2-C8 

methylene region. As a consequence of such interaction, melting temperature decreased, peaks 
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became broader, and enthalpy remained relatively unaffected. The interaction of FA-glu with 

another phospholipid DMPG exhibited similar results (Table 4.2, Fig S4.2). As for DPPE (Table 

4.2, Fig S4.2), the phase transition temperature slightly decreased with FA-glu addition; 

however, the width of the peak was not significantly affected. Although the mean values of 

enthalpy decreased with the increase in FA-glu concentration, a statistical significance was not 

observed. This could be due to the location of FA-glu, which could be at C9-C16 in PL 

hydrocarbon chains, according to some reports37.  The enthalpy slightly decreased, indicating 

amino acid interaction with the PL head group, caused by the head-to-head repulsion12. The DSC 

study indicated that FA-glu disrupted the cooperativity of the PL packing, and could therefore 

modify the organization of bacterial cell membrane. The charge on PL did not seem to have a 

significant impact on the pattern of interaction with FA-glu; DMPC and DPPE are zwitterionic 

and DMPG has negative charge. For the concentration range studied, no mixed micelle of PL 

and FA-glu formed because only a single phase transition peak in all treatments was observed. 

4.5.6 FA-glu interaction with phospholipid of bacterial cell membrane. 

The silver staining electrophoresis clearly illustrated that FA-glu caused significant 

perturbation to cell membranes to cause leakage of cytoplasmic proteins. At lower surfactant 

concentrations, PLs are only disrupted cooperatively without changing the bilayer structure as 

the DSC results showed; whereas at higher concentrations, PLs will form mixed micelle with the 

surfactant, causing bilayer damage. Solubilization of PLs has been reported to occur when the 

mixed micelle is formed38.  

To confirm whether the 5 mg/mL FA-glu solubilized some PLs in bacterial cell 

membranes, mass spectrometry and 31P NMR were conducted. Table 3 shows the phospholipid 

profiles present in bacterial cell membranes that were extracted by chloroform and methanol 
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mixture solvent (control)24 and FA-glu. The data were compared with reported phospholipid 

studies for E. coli33 and L. monocytogenes39. Three types of PLs ([M-H]- 579, 733 and 773) were 

present in the FA-glu supernatant from E. coli O157:H7, while only one type of PL ([M-H]- 773) 

was present in L. monocytogenes FA-glu supernatant (Table 4.3). Due to limited data in the 

published literature, not many PLs were identified for L.monocytogenes; the ones identifiable in 

the organic solvent extract were not many as they mostly were for the E. coli. Chemical shifts -

1.4 ppm and -13.4 ppm in 31P NMR were observed both in organic solvent extract of E. coli 

O157:H7 and FA-glu supernatant. The chemical shift of -1.4 ppm indicated the presence of PL 

40, 41, while shift at -13.4 ppm might indicate the other forms of phosphorous, such as adenosine 

thiamine diphosphate42, a nucleotide sugar that is associated with response to cellular stress, or 

uridine diphosphoglucose43. However, in the organic solvent extract and supernatants from FA-

glu treated L. monocytogenes, only the chemical shift of -13.2 ppm was observed, which meant 

that PLs were not detected by this technique. This suggests that the single cell membrane in L. 

monocytogenes may not be enough to generate a signal in 31P NMR while E. coli O157:H7 have 

a double cell membrane; therefore, the PLs are more concentrated. The presence of PLs in the 

bacterial FA-glu supernatant confirmed our hypothesis that the FA-glu solubilized some PLs in 

the cell membranes. 
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Figure 4.1 Structure of FA-glu 

 

Figure 4.2a Glucose palmitate monoester (PA)’s inhibition effect on Salmonella Enteritidis   

 

Figure 4.2b FA-glu’s inhibition effect on Listeria monocytogenes. “(D)” indicates the 5% DMSO broth,  

“(B)” indicates the broth 
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3a (3) 3a (4) 

 

Fig 4.3a Transmission electronic microscopy image of negative stained E.coli O157:H7. 2a (1) and 2a (3) were 

untreated E.coli O157:H7, 2a (2) and 2a (4) were E.coli O157:H7 treated with 5 mg/mL FA-glu 
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3b (2) 

3b (3) 
 3b (4) 

3b (1) 

Fig 4.3 (continued) b Transmission electronic microscopy image of negative stained Listeria 

monocytogenes. 2b(1) , 2b(3) were untreated Listeria monocytogenes, 2b(2), 2b(4) were Listeria 

monocytogenes treated with 5 mg/mL FA-glu 
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Figure 4.4a Absorbance of leaked content in E.coli O157:H. Different letter indicated significant 

difference among treatments at the same wavelength  

  

Figure 4.4b Absorbance of leaked content in Listeria monocytogenes. Different letter indicated significant 

difference among treatments at the same wavelength 
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Figure 4.5a Silver staining of protein electrophoresis cell wall, cell membrane and cytoplasmic fractions 

of E.coli O17:H7 

 

Figure 4.5b Silver staining of protein electrophoresis for cell wall, cell membrane and cytoplasmic 

fractions of Listeria monocytogenes  
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Table 4.1 Inhibition effect (%) and growth absorbance difference between 0 and 24h (in brackets)   

Bio-based surfactant glucose palmitate   

concentration (mg/mL) 4.15 3 2 1 0.1 0.05   
Actual dissolved concentration 

(mg/mL) 0.56 0.51 0.3 0.24 0.05 0   

L. monocytogenes 42 (0.42) 26 (0.74) 28 (0.76) 34 (0.71) 17 (0.9) 12 (0.96)   
S. enterica  14 (0.73) 49 (0.53) 25 (0.76) 18 (0.77) 14 (0.93) 10 (1.05)   

E.coli O157:H7 41 (0.46) 44 (0.46) 36 (0.53) 20 (0.63) 11 (0.94) 9 (0.97)   

         

Bio-based surfactant  glucose laurate 

concentration (mg/mL) 22.1 14.7 7.36 4.15 3 1 0.1 0.05 

Actual dissolved concentration 

(mg/mL) 6.5 2.8 0.62 0.13 0.085 0.074 0.02 0 

L. monocytogenes 91 (-0.03) 87 (0.16) 57 (0.42) 108 (-0.27) 83 (0.39) 30 (0.87) 12 (0.96) 4 (1.05) 

S. enterica  85 (-0.05) 89 (0.19) 51 (0.40) 133 (-0.22) 105 (0.05) 35 (0.9) 8 (1.02) 3 (1.08) 

E.coli O157:H7 74 (-0.01) 78 (0.31) 38 (0.72) 129.9 (-0.51) 108 (0.01) 40 (0.77) 12 (0.92) 4 (1.02) 

         

Bio-based surfactant  PS750  (sucrose ester)    

concentration (mg/mL) 7.36 4.15 3 2 1    
Actual dissolved concentration 

(mg/mL) 4.72 2.26 1.45 0.89 0.42    

L. monocytogenes 45 (0.8) 70 (0.32) 48 (0.59) 13 (0.83) 38 (0.48)    
S. enterica  31 (0.93) 52 (0.55) 11 (0.83) 21 (0.68) 14 (0.62)    

E.coli O157:H7 26 (1.2) 51 (0.45) 48 (0.48) 38 (0.48) 0 (0.89)    
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Table 4.1 continued 

Bio-based surfactant  surfactin 

concentration (mg/mL) 15 10 5 0.1 0.05 0.01 0.005 

L. monocytogenes 6.1 (1.03) 3 (1.05) 22 (0.87) 28 (0.79) 17 (0.93) 13 (0.98) 14 (0.98) 

S. enterica  11 (0.87) 9 (0.91) 10 (0.91) 0 (0.97) 0 (1.02) 0 (1.03) 3 (0.94) 

E.coli O157:H7 35 (0.78) 35 (0.74) 36 (0.8) 9 (0.93) 3 (1.01) 4 (0.98) 4 (0.98) 

        

Bio-based surfactant  FA-glu (DMSO)     

concentration (mg/mL) 25 20 15 10 5 0.1 0.05 

L. monocytogenes 72 (0.29) 83 (0.2) 78 (0.25) 61 (0.43) 57 (0.45) 4 (1.05) 7 (1.02) 

S. enterica  65 (0.33) 77 (0.25) 75 (0.26) 62 (0.38) 57 (0.45) 6 (1.05) 2 (1.09) 

E.coli O157:H7 80 (0.22) 84 (0.17) 87 (0.14) 81 (0.21) 72 (0.34) 10 (0.96) 7 (0.97) 

        

Bio-based surfactant  FA-glu (Aq) 

concentration (mg/mL) 25 20 15 10 5 3 0.1 

L. monocytogenes 100 (0.07) 89 (-0.02) 66 (0.4) 47 (0.59) 47 (0.65) 40 (0.77) 21 (0.97) 

S. enterica  96 (0.12) 82 (0.22) 75 (0.34) 42 (0.75) 41 (0.7) 34 (0.85) 13 (1.06) 

E.coli O157:H7 100 (0.04) 86 (0.01) 71 (0.26) 65 (0.34) 51 (0.43) 37 (0.63) 0 (1.05) 

 

Note: Inhibition percentage values were calculated according to equation 1.  
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Table 4.2 Parameters of differential scanning calorimetry  

  Tm (Transition Temperature °C) 

Phospholipid  

Without 

FA-glu 

1% FA-

glu 

2.1% Fa-

glu 

2.6% Fa-

glu 

5.1% Fa-

glu 

12.5% Fa-

glu 

DMPC (Zwitterionic) 23.07a 21.48bc 21.85b 20.63bc 21.02bc 20.29c 

DMPG (Anionic) 20.02bc 20.92ab 19.87bc 18.86c 19.01c -* 

DPPE (Zwitterionic) 64.67a 63.44ab 64.11ab 64.20ab 63.02b 62.61b 

              

  T½  (1/2 of phase transition temperature range) 

Phospholipid  

Without 

FA-glu 

1% FA-

glu 

2.1% Fa-

glu 

2.6% Fa-

glu 

5.1% Fa-

glu 

12.5% Fa-

glu 

DMPC (Zwitterionic) 1.78d 2.31c 2.41c 3.41ab 2.93b 3.92a 

DMPG (Anionic) 4.26bc 2.80d 3.68c 4.85b 5.10b 7.28a 

DPPE (Zwitterionic) 2.97a 2.89a 2.84a 3.0a 3.60a 3.37a 

       

  Enthalpy (J/g) 

Phospholipid  

Without 

FA-glu 

1% FA-

glu 

2.1% Fa-

glu 

2.6% Fa-

glu 

5.1% Fa-

glu 

12.5% Fa-

glu 

DMPC (Zwitterionic) 23.88ab 25.12a 25.33a 25.47a 23.53ab 21.27b 

DMPG (Anionic) 28.48a 28.65a 24.06b 24.62ab 26.86ab 24.23b 

DPPE (Zwitterionic) 35.39a 27.62a 29.58a 29.50a 26.73a 21.72a 

                                   Note: the different letters indicate significant differences in a row (P<0.05) 
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Table 4.3 Identification of phospholipids present in the bacterial organic solvent extract and fatty acyl glutamic extract 

Molecular 

weight [M-H]- 

Molecular 

formula Phospholipid 

E.coli O157:H7 

choloforom and 

methanol extract 

E.coli 

O157:H7 

FA-glu 

extract 

Listeria 

monocytogenes 

choloforom and 

methanol extract 

Listeria 

monocytogenes 

FA-glu extract 

579.2724 C29H58NO8P PE C12:0/C12:0 √ √   

674.4737 C3H69NO8P 

PE C14:0/cyC17:0 or 

PE C15:0/C16:1 √    

688.4918 C37H71NO8P 

PE C15:0/cyC17:0 or 

PE C16:0/C16:1 √    
691.9761 C36H68O10P PG C14:0/C16:1 √  √  
693.4711 C36H70O10P PG C16:0/C14:0 √    
702.5024 C38H73NO8P PE C16:0/cyC17:0 √    

719.4864 C38H74O10P 

PG C14:0/C18:1 or 

PG C15:0/cyC17:0 or 

PG C16:0/C16:1 √  √  

733.5024 C39H74O10P PG C16:0/cyC17:0  √ √   
747.517 C40H76O10P PG C16:0/C18:1 √  √  

761.5331 C41H78O10P PG C16:0/cyC19:0 √    
773.532 C42H77O10P PG C18:1/C18:1 √ √  √ 

1307.5316 C70H132O17P2 

bis(phosphatidyl)glyc

erol fatty acid 

combinations 

15/15/15/16:1     √   

Note: check mark indicated phospholipid presence in the bacterial extract.
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Supplemental material 

 

Figure S4.1a Glucose laurate monoesters (LA)’s inhibition effect on Listeria monocytogenes. The 

surfactant had similar effect on Salmonella Enteritidis and E.coli O157:H7  

 

Figure S4.1b Surfactin’s inhibition effect on E.coli O157:H7 (three bacteria had the same trend)
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Figure S4.2 DSC heating scan thermograms for phospholipid (4a-DMPC, 4b-DMPC, 4c-DPPE) with different content (mol% of total) of FA-glu
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5.1 Abstract 

Two novel biosurfactants - surfactin and its variant fatty acyl glutamic acid (FA-glu) - 

were compared with commercial emulsifiers - lecithin, and a mixture of Tween 80 and lauric 

arginate (TLA) - for formation and stability of emulsions and nanoemulsions containing 

cinnamaldehyde (CM). The nanoemulsions’/emulsions’ antimicrobial performance against two 

common foodborne pathogens E. coli O157:H7 and Listeria. monocytogenes was also compared. 

Two emulsifier concentrations (0.5% w/w and 1% w/w) and two homogenizing pressures (9,000 

PSI and 18,000 PSI) were compared for droplet stability during storage for 46 days at 4, 25, and 

37°C. Surfactin, FA-glu and TLA mixture formed nanoemulsions at both concentrations, but 

lecithin did not. Droplet sizes did not change significantly during 38 days at temperatures stored 

for surfactin- and TLA mixture- stabilized nanoemulsions. However, FA-glu and lecithin 

stabilized emulsions coalesced after 13th day when stored at 37°C; also, FA-glu stabilized 
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emulsion thickened during elongated storage days at 4°C.  The incorporation of CM in 

nanoemulsions or emulsions did not lower the minimum inhibitory concentration (MIC) for 

bacteria in broths. However, at the concentrations lower than MIC, nanoemulsions and 

emulsions containing CM formulated with FA-glu, lecithin, and TLA, showed enhanced effects 

in inhibiting bacterial growths compared to CM alone, with smaller droplets inhibiting more. 

Key words: biosurfactants, surfactin, fatty acyl glutamic acid, nanoemulsion, antimicrobial effect, 

emulsion droplet size 

5.2 Introduction 

Biobased products are partially or fully derived from biorenewable agricultural resources 

(US. Senate Commimittee on Agriculture Nutrition and Forestry, 2006). They have potential use 

in food, detergent, cosmetic, pharmaceutical, agricultural, and related industries (Banat, Makkar, 

& Cameotra, 2000). Biobased surfactants can be produced by microbial fermentation and 

enzymatic synthesis (Ren & Lamsal, 2017; Reznik, Vishwanath, Pynn, Sitnik, Todd, Wu, et al., 

2010); since such methods can employ sustainable methods of producing biobased surfactants, 

they could lower the environmental pollution and reduce usage of petroleum feedstock (Banat, 

Makkar, & Cameotra, 2000). Various biobased surfactants have been researched for optimization 

of production rates (Arcos, Bernabe, & Otero, 1998; Degn, Pedersen, & Zimmermann, 1999; 

Ren & Lamsal, 2017), medical applications (Hayes, 2009), soil bioremediation (Bustamante, 

Duran, & Diez, 2012), biofilm inhibition (Sriram, Kalishwaralal, Deepak, Gracerosepat, 

Srisakthi, & Gurunathan, 2011), and antimicrobial effects (Y. Chen, Nummer, & Walsh, 2014; 

Habulin, Šabeder, & Knez, 2008). Surfactin and fatty acid glutamic acid (FA-glu) are microbial 

biosurfactants which can be produced by Bacillus subtilis and have very good surface activity, as 

they have been shown to reduce the water surface tension to 27 mN/m and 36 mN/m from 72 
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mN/m, respectively (Reznik, et al., 2010). Their structures are shown in Fig 5.1 (a, b): surfactin 

is a cyclic peptide with 7 amino acids linked to fatty acid by a peptide bond, whereas, FA-glu is a 

variant molecule of surfactin with only one hydrophilic amino acid, conferring it increased 

aqueous solubility. Surfactin was studied for its antimicrobial activity, such as prevention of 

biofilm formation and anti-fungal activity due to its capability of interacting with or modifying 

cell membranes (Zhao, Shao, Jiang, Shi, Li, Huang, et al., 2017). It can also enhance 

biodegradation of diesel-contaminated water and soil (Whang, Liu, Ma, & Cheng, 2008) as it 

improves the solubility of organic compound or emulsification of liquid pollutant (Volkering, 

Breure, & Rulkens, 1997). The FA-glu’s emulsion and antimicrobial effects have not been 

reported in published research, as this is a relatively newer chemical. In many studies for 

antimicrobial effects of biosurfactants, mostly the minimum inhibition concentrations of 

biosurfactants as applied in bacterial broth or food medium (eg. milk and beef) were reported (Y. 

Chen, Nummer, & Walsh, 2014; Hathcox & Beuchat, 1996). However, both their functionality 

and effectiveness as food emulsifiers, and potential synergistic effect of emulsion droplet size on 

antimicrobial performance have not been reported. Since surfactin and FA-glu have potential as 

clean-label food ingredients, studies comparing their functionalities as food emulsifiers and 

antimicrobial agents are very relevant to food industry. 

Antimicrobial effects in food can also be imparted by natural ingredients like essential 

oils (EO); for example, cinnamaldehyde (CM), is the main constituent of cinnamon bark EO 

(Ribeiro-Santos, Andrade, Madella, Martinazzo, Moura, de Melo, et al., 2017) and is reported to 

have antimicrobial effect against a number of bacteria and fungi (Jantan, Karim Moharam, 

Santhanam, & Jamal, 2008; Shan, Cai, Brooks, & Corke, 2007). However, the use of most EO in 

food is limited due to their lower solubility in aqueous systems (Chang, McLandsborough, & 
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McClements, 2015), and strong aroma and flavor characteristics. Emulsions, however, have been 

studied to incorporate essential oils in food systems for antimicrobial effects. Nanoemulsions, in 

which the droplet size is usually less than 1µm (El Kadri, Devanthi, Overton, & Gkatzionis, 

2017), were studied for their antimicrobial activity (Chang, McLandsborough, & McClements, 

2015; Terjung, Löffler, Gibis, Hinrichs, & Weiss, 2012). Various parameters, such as 

emulsifiers’ concentration, droplet size and processing methods were reviewed for the 

antimicrobial effect, however, no general trends were found (El Kadri, Devanthi, Overton, & 

Gkatzionis, 2017). For instance, (Wilkinson, 2015) reported improved efficiency of eugenol at 

intermediate concentration of lecithin (0.01%), not at lower (0.0025%, 0.005%) or higher 

concentrations (0.015%). Terjung and others (2012) found larger droplets (3 μm) of Tween 80-

stabilized emulsions were more effective at microbial inhibition than smaller ones (80 nm), 

whereas, another study (Topuz, Özvural, Zhao, Huang, Chikindas, & Gölükçü, 2016) found that 

the nanoemulsions had better bactericidal effect than coarse emulsions. In any case, it is 

important to study the inhibition mechanism by verifying whether essential oils locate at the oil-

water interface or inside the emulsifiers micelles, and how the emulsions’ size affected the 

access of antimicrobial agents to bacteria (Terjung, Löffler, Gibis, Hinrichs, & Weiss, 2012). 

The methods to produce nanoemulsions, such as high pressure homogenization or ultrasonication 

could also generate heat and shear that can destroy antimicrobial agents (Pestana, Gennari, 

Monteiro, Lehn, & de Souza, 2015), making processing method also very important. It is, 

therefore, hard to predict the effect of antimicrobial agents in emulsions without testing in model 

and real food systems. Understanding such factors affecting stability and antimicrobial properties 

will help improve processing techniques and functionalities of novel emulsifiers, such as 

surfactin and FA-glu with antimicrobial agents. The objectives of this study are to 1) evaluate 
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and compare the stability of some biobased surfactants (emulsifier)-stabilized oil-in-water 

nanoemulsions/emulsion systems that contained cinnamaldehyde under different processing and 

storage conditions, and 2) to compare antimicrobial effect of nanoemulsions/emulsions stabilized 

by biobased emulsifiers on foodborne pathogens E. coli O157:H7 and L monocytogenes in broth 

system. 

5.3 Materials and Methods 

5.3.1 Reagents and bacterial strains  

Surfactin and fatty acyl glutamic acid were kindly donated by Modular Genetics. Inc 

(Woburn, MA). Lecithin and tween 80 were purchased from Fisher Scientific (Fair Lawn, NJ). 

Cinnamaldehyde was purchased from Sigma-Aldrich (St. Louis, MO). Lauric arginate was 

donated by A&B ingredients Inc (Fairfield, NJ). Canola oil was purchased from a local grocery 

store. Brain heart infusion (BHI) broth was purchased from Fisher Scientific (Hampton, NH).  

Two common food-borne pathogens, E. coli O157:H7 FRIK125 and L. monocytogenes 

Scott A NADC 2045 serotype 4b were used for the antimicrobial tests and they were obtained 

from Food Research Institute University of Wisconsin-Madison, and USDA/national animal 

disease center (Ames, IA), respectively. 

5.3.2 Nanoemulsions preparation and characterization 

Nanoemulsions were prepared with four different emulsifiers: microbial surfactin and 

FA-glu, and commercial lecithin, and a mixture of Tween 80 and lauric arginate (mass ratio 9:1, 

denoted as TLA mixture). The emulsifiers were dissolved in phosphate buffer solutions (PBS) at 

pH 7.2 and then mixed with CM and canola oil. FA-glu, lecithin and TLA mixture easily 

dissolved in PBS treated with water bath at 80°C. The surfactin was dissolved following a 

method described in literature (H.-L. Chen, Lee, Wei, & Juang, 2008) with modifications: it was 



www.manaraa.com

115 
 

 
 

initially dissolved at 0.1 M NaOH PBS solution, then the pH was adjusted to pH 7.2 by adding 

proper amount of 0.1 M HCl PBS solution. 

Two emulsifier concentrations (0.5% w/w and 1% w/w) were used in emulsion formation 

at two homogenizing pressures (9,000 PSI and 18,000 PSI). One or 2g of emulsifiers, 2 mL CM, 

18 mL canola oil, and 178 mL or 179 mL phosphate buffer solutions (PBS), respectively, for 

0.5% or 1% emulsifier levels were initially homogenized using a hand-held lab blender (Bamix 

Type M 150) for 2 min at 15,000 rpm. The emulsions were then passed three times through a 

high-pressure homogenizer (EmulsiFlex-D20, Avestin, Inc, Ottawa, Ontario) at either 9,000 or 

18,000 PSI. Two steady-state samples (200 mL) for each treatment were then collected for 

storage stability studies so there were 34 samples in total.  After preparation, each emulsion was 

further sub-divided to store at three different temperatures: 4°C, 25°C and 37°C. 

5.3.3 Nanoemulsion/emulsion droplet size determination 

The mean droplet size for nanoemulsions (z-average) was measured by a dynamic light 

scattering instrument (Malvern Zetasizer Nano ZS, Malvern instruments, Worcestershire, UK). On 

1st, 13th, 24th, 38th and 46th storage day, 2 mL of the emulsions were placed in a spectrometry cell 

for droplet size measurement. Each sample had at least 12 measurement runs to obtain a satisfying 

result determined by the instrument. The emulsion droplet size was measured by Malvern Particle 

Size Analyzer (Mastersizer Hydro 2000). Emulsions were introduced to the sample cup until an 

obscurity of 10-20% was obtained. Zeta-potential determination 

The emulsion zeta-potential was measured by a particle electrophoresis instrument 

(Malvern Zetasizer Nano ZS, Malvern instruments, Worcestershire, UK) following a method 

reported by (Witayaudom & Klinkesorn, 2017): 0.1 mL emulsion was placed in the zeta-cell and 



www.manaraa.com

116 
 

 
 

diluted with 2 mL PBS solution, each measurement had enough automatic runs until a satisfying 

result was obtained.  

5.3.4 Minimum inhibitory concentration for nanoemulsions/emulsions containing 

cinnamonaldehyde against pathogens 

Growth curves for two pathogens under study with or without CM or CM-containing 

nanoemulsions were obtained using a Bioscreen C turbidometer (Growth Curves USA, 

Piscataway, NJ). Bacterial stock cultures were stored at -80°C and propagated in BHI broth 

(35°C, 24h). Two consecutive 24-h sub-culturing of the strains in BHI was conducted prior to 

inoculation. Each bacterial culture was diluted 100-fold in fresh BHI to obtain a cell 

concentration of 107 CFU/mL, and 9.9 mL BHI broth was inoculated with 0.1 mL aliquots of the 

diluted culture to obtain a concentration of 105 CFU/mL. Non-emulsified CM or 

nanoemulsions/emulsions containing CM were added into the BHI broth to obtain CM 

concentrations of 0.125 µL/mL, 0.25 µL/mL, 0.5 µL/mL, 0.75 µL/mL and 1 µL/mL. The tubes 

were then vortexed for 10s. Two hundred and fifty L of each inoculated BHI broth was 

transferred to 100- well microtiter plate and incubated at 37°C for 48 h. The absorbance at 600 

nm of the broth was recorded every 30 min for 48 h. For every treatment, two inoculated broth 

samples were prepared and two readings from each sample were recorded at every time point. 

The absorbance differences (ΔAb24) between the 0 h and 24 h were calculated to evaluate the 

growth condition. The minimum inhibitory concentration (MIC) was defined as the lowest 

concentration of either non-emulsified CM or that contained in the nanoemulsions/emulsions that 

can prevent bacterial growth throughout 48 h incubation period (Huang, Wei, Zhao, Gao, Yang, 

& Cui, 2008), as reflected by a flat absorbance curve throughout. The nanoemulsions/emulsions 

used for droplet size and zeta-potential measurement was from the same batch, while studies on 
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the nanoemulsions/emulsions for antimicrobial performances were done with another batch. The 

bacterial broths were inoculated with the nanoemulsions/emulsions containing CM at the second 

week of storage. 

5.3.5 Statistical analyses 

Statistical comparisons for the emulsion characterization were conducted using SAS 9.4 

software (SAS Institute INC., Cary, NC). Proc mixed test was used to determine how the 

independent factors (storage days, concentrations and temperatures) or their interactions 

influenced the response variables (droplet size and zeta potential). Only significant interactions 

(P<0.05) are presented and discussed. 

5.4 Results and Discussion 

5.4.1 Stability of Emulsion Droplets 

Table 5.1 presents the data on droplet size stability for emulsions stabilized with different 

emulsifiers, and interaction between relevant parameters. The corresponding visualization of 

emulsions is presented in Fig 5.2. Only three three-way interactions were significant for the 

droplet size stability: emulsifier type, storage duration, and storage temperature (P<0.05, Table 

5.1a); emulsifier type, concentration and storage temperature (P<0.05, Table 5.1b); and 

emulsifier type, pressure and storage temperature (P<0.05, Table 5.1c). These are discussed 

below: 

5.4.1.1 Interaction of emulsifier type, storage day and storage temperature 

Nanonemulsions stabilized with surfactin and TLA mixture were very stable during 

storage, with surfactin nanoemulsions size ranging between 400-750 nm, and TLA mixture 

nanemulsions size ranging between 500-950 nm, and these sizes were not affected by storage 

temperature (Table 5.1a). For FA-glu, the droplet size increased drastically (1341 nm) only on 
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the last storage day (38th day) at 37°C. For lecithin-stabilized emulsions at 4°C, the droplet size 

remained constant, however, at both 25°C and 37°C, smaller sizes were observed. This was due 

to oil droplet coalescence with a layer of oil on top observed (Fig 5.2b and 5.2c), which was not 

sampled; instead, samples contained the un-coalesced droplets remaining in the emulsion. 

Similar observations were reported by a previous study (Yang, Zhao, Tian, Lu, Zhao, Bao, et al., 

2017). The storage temperature played a role in instability of FA-glu and lecithin stabilized 

emulsions, as it is known that higher storage temperature generated more energy for droplets’ 

Brownian motion resulting in higher chances for droplet to collide and coalesce (Yang, et al., 

2017). The storage temperature did not affect the sizes of surfactin and TLA mixture stabilized 

emulsions, due to effective electrostatic repulsion and steric hindrance.  

5.4.1.2 Interaction of emulsifier type, concentration, and temperature 

From Table 5.1b, we can see the interaction of surfactant type, concentration, and storage 

temperature affecting the emulsion droplet size. The concentration and temperature had no effect 

on the droplet size for surfactin and TLA mixture stabilized emulsions. However, for FA-glu, the 

higher concentration (1%) resulted in slightly smaller, but not significant, decrease in droplet 

size at each storage temperature studied. For lecithin, the higher concentration resulted in 

significantly lower droplet sizes at both 4°C and 25°C, but not at 37°C. Higher concentration of 

emulsifier in the emulsion generally lead to smaller droplet sizes, as emulsifiers are able to cover 

more interfacial areas on droplets (McClements, 2004a). However, the sizes are also dependent 

on how fast the emulsifiers can adsorb to the interface; if the time spent during the 

homogenization process is too short, or if there is an uneven distribution of disruptive energy that 

the emulsifiers didn’t completely adsorb at the interface, the droplets may not be disrupted and 

not stabilized (Walstra & Smulder, 1998)). In our study, the three passes during homogenization 
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might not be sufficient enough for smaller droplet generation and emulsifiers’ adsorption, 

leading to inadequate or incomplete adsorption of emulsifiers at the interface. If the emulsions 

were passed through the high-pressure homogenizer more number of times, significant reduction 

in size at higher concentration could be observed. 

5.4.1.3 Interaction of emulsifier type, pressure and storage temperature 

Table 5.1c shows the three-way interaction of emulsifier type, pressure, and temperature. 

The pressure and storage temperature had no effect in the droplet size for surfactin and TLA 

mixture stabilized nanoemulsions. Whereas, for FA-glu stabilized nanoemulsions storage at 4°C 

resulted in slightly but not significantly smaller droplet sizes (500-600 nm), the nanoemulsions 

storage at 25°C and 37°C had slightly bigger size droplet (600-800 nm). For lecithin, higher 

pressure resulted in slightly but not significantly smaller size droplets that were stored at 4°C and 

25°C, but larger sizes at 37°C. Although there were some significant increase/decrease in the 

droplet size, the magnitudes were not very obvious. Higher pressures during homogenization 

generally produce smaller sized emulsion droplets, due to intense turbulence and shear flow 

fields (Walstra, 1983). However, although turbulence generally leads to the break-up of the 

dispersed phase into smaller droplets, it may also generate collision that can result in re-

coalescence (Walstra, 1983). The size of the droplets produced during homogenization depends 

on adsorption time for emulsifiers onto droplet surfaces and collision time duration; if the former 

is occurring at faster rate, the droplet can be stabilized (McClements, 2004a). Several studies 

also reported insignificant changes in droplet size generated at higher pressures (Floury, 

Desrumaux, & Lardieres, 2000; Juttulapa, Piriyaprasarth, Takeuchi, & Sriamornsak, 2017), the 

reasons being the re-coalescence of newly created fine droplets, insufficient emulsifiers for 

adequate adsorption, and denaturing of protein or peptides stabilized systems. In our study, the 
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first two situations might have occurred: we speculate that if our emulsifiers can adsorb at a 

faster rate, or pressures can be applied for longer times, the higher pressures should generate 

smaller emulsion sizes. Another reason could be possible pressure fluctuation in the 

homogenization chamber causing significant variability in applied pressure leading to no effect 

of applied pressure on emulsion droplet sizes, as the pressure is manually controlled. 

5.4.2 Emulsion Stability Beyond 38 Days 

On 46th day, the droplet sizes were measured with the Malvern 2000 (Table 5.1d), as FA-

glu and lecithin stabilized emulsion droplet sizes were out of the range for the nanosizer. Only a 

three-way interaction of emulsifier type, concentration, and temperature was observed (P<0.05, 

Table 5.1d). Again, the concentration and temperature did not affect the droplet size for surfactin 

and TLA mixture stabilized emulsion on 46th storage day. For FA-glu, 37°C obviously led to the 

largest droplet size at both concentrations (over 250 µm). Surprisingly, at 4°C, the FA-glu (1%) 

stabilized emulsion became yogurt-like viscous, leading to a relatively bigger droplet sizes (17 

μm); this was not observed at lower concentration (0.5%). This was probably caused by depletion 

flocculation of the excess amount of un-adsorbed FA-glu, which may have existed as micelles in 

the emulsion (Bibette, 1991). The attractive force among the micelles is bigger enough to 

overcome the electrostatic repulsion between the droplets (McClements, 1994) so that the micelles 

‘bridge’ among the droplets and form viscous structure. The driving force for this phenomenon is 

osmotic potential: the micelles concentration is higher in the bulk than in the ‘bridge’ regions so 

there is a tendency for the micelles to move from bulk to the region between droplets (McClements, 

1994). Higher number of such micelles can induce depletion flocculation and form three-

dimensional network (McClements, 2004b). It is possible that the lower storage temperature 

reduced the Brownian movement of both micelles and droplets, so the yogurt-like viscous was 
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formed. Several other studies also have reported gel-like structure formation due to flocculation 

(Graça, Raymundo, & de Sousa, 2016; Tang & Liu, 2013), however, their flocculation were caused 

by different intermolecular forces such as hydrophobic attraction, electrical attraction caused by 

opposite charge of the surfactant, etc. For lecithin at 0.5%, like FA-glu, 37°C storage led to the 

largest droplet size (172 μm), and higher concentration (1%) generated smaller sizes. Storage at 

both 25°C and 4°C led to the smaller droplet sizes on 46th day. 

5.4.3 Zeta-potential analysis 

Zeta-potential indicates the electric charge distribution in the double layer around the 

surface-charged particles (droplets). Apparently, surfactin and FA-glu stabilized emulsions had 

the highest absolute value of zeta-potential at around 50 mV (Table 5.2), followed by lecithin-

stabilized emulsion (~30 mV), and TLA mixture stabilized emulsions (~ 2 mV). Three factors- 

storage day, emulsifier type, and storage temperature- had significant interaction affecting the 

zeta-potential during storage. For example, the absolute zeta-potential for surfactin-stabilized 

emulsion was constant around 50- 52 mV, regardless of the temperature till 38 days, indicating 

the constant droplet repulsion being one of the main reason for better stability. Higher absolute 

value of zeta potential of a suspension generally means higher stability (Hanaor, Michelazzi, 

Leonelli, & Sorrell, 2012), but it is not true for every type of emulsions (Bhattacharjee, 2016). 

For example, although the absolute values of zeta-potential were in the range of 2-5 mV for TLA 

mixture stabilized emulsions, the droplet size did not change significantly, possibly due to the 

stearic hindrance (Celus, Salvia-Trujillo, Kyomugasho, Maes, Van Loey, Grauwet, et al., 2018). 

Whereas the lecithin had much larger absolute value (26-30 mV), it still experienced phase 

separation at 37°C. It is worth pointing that the zeta potential absolute values were constant at 

4°C for both lecithin and TLA mixture stabilized emulsions stored for 38 days; they experienced 
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only slight increase at 25°C and 37°C storage. This subtle increase in zeta-potential at elevated 

temperatures can be explained by the increased emulsifiers adsorption density at the interface 

(Bhattacharjee, 2016): as temperature increased, coalescence occurred resulting in bigger 

droplets. As a consequence, the surface area of the dispersed phase decreased leading to increase 

in the number of charges on the droplet surfaces. For FA-glu stabilized emulsions, although the 

zeta-potential was close to that of surfactin, the stability was lower than those of surfactin and 

TLA mixture stabilized emulsions. The reason could be lower molecular weight lacking the 

steric hindrance to form a viscoelastic interface at the oil droplet surface (Celus, et al., 2018). As 

a result, phase separation was observed on 24th day at temperature 37℃ (Fig 5.2 c). The decrease 

in zeta-potential at 37°C can be attributed to the dissociation of the glutamic acid part of the FA-

glu promoted by the elevated temperature, thus the increased level of hydrogen ion reduced the 

repulsive force (Jackson & Vinogradov, 2015). 

From the above discussion, it was very obvious that the surfactin and TLA mixture 

stabilized emulsion were more stable than those of FA-glu and lecithin stabilized ones. Since the 

lecithin generated emulsion droplet sizes exceed 1 μm, the lecithin stabilized emulsions cannot 

be considered as nanoemulsion. Surfactin, although non-ionic, had relatively large magnitude of 

zeta potential, thus provided electrostatic repulsion leading to higher stability. Tween 80, also 

provided steric hindrance for stabilizing the droplets from coalescence (Celus, et al., 2018). 

Lecithin, although provided some electrostatic repulsion, coalescence still occurred at 25°C and 

37°C. Another study also reported the use of lecithin promoted coalescence when used at 

medium-high level (Drapala, Auty, Mulvihill, & O'Mahony, 2015). It is possible that due to the 

limited hydrophilic property (Colbert, 1998), the adsorption to the interface was affected. The 

different capabilities to produce different sizes of the emulsion lie in their capability to produce 
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different interfacial tension between oil and water. According to the theory from previous 

research (Walstra, 1993), the maximum droplet size that can persist in emulsion is direct 

proportional to the interfacial tension when continuous phase’s viscosity, shear rate and the ratio 

of viscosities of dispersed and continuous phases are constant.  

5.4.4 Antimicrobial inhibition by biobased surfactants-stabilized emulsions and the effect of 

emulsion droplet size 

To study the effect of emulsion droplet size on antimicrobial effect of biobased 

surfactants-stabilized emulsions containing natural antimicrobial (CM) on common foodborne 

pathogens, fresh emulsion batches were prepared: after initial homogenization by kitchen blender 

(denoted as ‘coarse emulsion’), and after passing the coarse emulsions through high pressure 

homogenizer (‘fine emulsion’). The emulsion droplet sizes were measured during the 3rd week. 

There were significant differences in droplet size among emulsions stabilized with different 

emulsifiers - Surfactin and TLA mixture stabilized emulsion had the smallest sizes (1.2 µm and 

7.9 µm for fine and coarse emulsion stabilized by surfactin; 0.4 µm and 8.5 µm for fine and 

coarse emulsion stabilized by TLA mixture. For lecithin, it was unexpected that fine emulsions 

had a larger droplet size (mean diameter 122.6 µm) than the coarse one (mean diameter 83.4 

µm); it is possible that the lecithin source we purchased did not have good surface activity, 

which can be reflected by the droplet size data.FA-glu stabilized emulsions had the greater 

sizes.No significant difference between fine and coarse emulsions for all the emulsifiers.  

5.4.4.1 Antimicrobial inhibition by surfactin-stabilized emulsions 

The ΔAb24 values were calculated to evaluate the inhibition effects of emulsions, and the 

absorbance changes during the 24 h are presented for each emulsions and bacteria in Table 5.3a. 
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The ΔAb24 values reflect the inhibition strength to some extent, but cannot determine the MIC, as 

phase separation will decrease the absorbance. Our preliminary result indicated that the MIC for 

CM against E. coli O157:H7 was 0.25 µL/mL when bacterial count was around 105 CFU/mL. 

The surfactin-stabilized coarse and fine emulsions did not lower the MIC, which was also 0.25 

µL/mL for both (Table 5.3a). However, emulsified CM was effective in inhibiting growths at a 

sub-MIC concentration of 0.125 µL/mL compared to non-emulsified CM at the same 

concentration, indicating improved inhibition effect by the emulsions. On one hand, it is known 

that surfactin can generally inhibit bacterial growths (Ndlovu, Rautenbach, Vosloo, Khan, & 

Khan, 2017) and can alter cell membrane resulting in nucleic acid leakage (Gao, Han, Liu, Qu, 

Lu, & Bie, 2017), on the other hand, surfactin as an emulsifier in the system could limit its own 

adsorption to the bacteria cell membranes due to its adsorption on the emulsion oil droplets 

surfaces. It is possible that the synergistic effect of both surfactin and expanded surface area for 

emulsified CM improved the antimicrobial performance. However, the fine emulsion (average 

diameter 1.2 µm) did not perform better than the coarse emulsion (average diameter 7.9 µm), 

indicating the further increasing of surface area did not improve inhibition. 

For L. monocytogenes, MIC for non-emulsified CM was 0.125 µL/mL when bacteria 

count was around 105 CFU/mL. However, the surfactin-stabilized emulsions did not inhibit these 

bacteria at 0.125 µL/mL, instead, the MICs for the fine and coarse emulsions were 0.5 µL/mL 

and 0.25 µL/mL, respectively. It was unexpected that fine emulsions had higher MIC than coarse 

emulsions. From these observations, it was seen that the use of surfactin to expand the surface 

area of emulsified CM for higher antimicrobial behavior did not hold for L. monocytogenes, 

rather, it may depend on competitive/preferential binding of surfactin to bacteria or the oil 

droplets. The negative droplet charge reflected by the zeta-potential, could also interfere the 
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contact of CM to negative charged cell membrane. It is important to point out that lower ΔAb24 

can be associated with stronger inhibition effect of the antimicrobial; for example, at sub-MIC 

concentration, the ΔAb24 was usually higher than 0, whereas, at concentrations higher than MIC, 

the ΔAb24 were close to zero or negative. However, the values were also affected by the phase 

separation, thus one cannot solely rely on ΔAb24  for the determination of MIC. For instance, 

although ΔAb24  was -0.12 for fine surfactin emulsion of L. monocytogenes, the bacteria still grew 

during 48 h (absorbance increased for a period of time), the later decreasing of absorbance was 

caused by phase separation. Only a flat growth curve of the bacteria can indicate a MIC (Huang, 

Wei, Zhao, Gao, Yang, & Cui, 2008). 

5.4.4.2 Antimicrobial inhibition by FA-glu stabilized emulsions 

For FA-glu stabilized emulsions, the MICs against E. coli O157:H7 was 0.25 µL/mL for 

fine emulsion, but was not found for coarse emulsion in the range of 0.125-1 µL/mL, thus, 

indicating the MIC to be beyond this range (Table 5.3b). The fine emulsions had better inhibition 

performance than coarse emulsions at 0.125 µL/mL concentration, as there was more growth in 

the coarse emulsion. As the concentration of CM in the coarse emulsion increased, the inhibition 

effect became stronger. For example, at CM concentration of 0.125 µL/mL in coarse emulsion, 

the E. coli grew from 7.5-31h; at concentration of 0.25 µL/mL, the bacteria started to grow very 

slowly h and absorbance remained almost unchanged for the rest of the incubation period. At 

higher concentrations (0.5, 0.75 and 1 µL/mL CM concentrations), bacteria started to grow from 

3.5-8 h, then continued to grow very slowly to a peak (at 33 h and 25 h respectively), then 

decreased gradually. The decreased absorbance was caused by the phase separation in emulsion 

that occurred after 48 h incubation at 37°C (visual observation), and the broth became clearer 

with a cream layer on top. For L. monocytogenes, similar to E.coli, the MIC for fine emulsion 
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was 0.25 µL/mL and the MIC for coarse emulsion was beyond the range of 0.125-1 µL/mL. The 

fine emulsion at 0.125 µL/mL and coarse emulsion at 1 µL/mL had similar effect that the 

bacteria started to grow at 5-6 h, slowly at first and reaching the peak at around 21 h, and 

decreasing to a level lower than the initial absorbance. At CM concentration of 0.25 µL/mL in 

coarse emulsion, although the ΔAb24   was negative, bacteria grew very slowly with almost no 

change in absorbance until 23 h then phase separation occurred. At the concentration of 0.5 and 

0.75 µL/mL for coarse emulsion, the bacterial lag time reduced to 8-10 h, reaching the highest 

level around 40-46 h before decreasing. For FA-glu, overall, the fine emulsions had better 

inhibition effect than coarse emulsions, which indicated that smaller size played a role in 

enhancing the antimicrobial effect. Compared with surfactin, FA-glu is a smaller molecule, thus, 

its emulsions may have had better chance to contact bacteria causing slower growth or even 

inactivation. Although FA-glu had some antimicrobial effect by interacting with cell membrane, 

the MIC was much higher than the concentration we used in this study (unpublished data), so the 

role of oil droplet size was more important than the antimicrobial effect of FA-glu itself. 

5.4.4.3 Antimicrobial effect by lecithin stabilized emulsions 

For lecithin-stabilized emulsions, the MICs for E. coli were 0.5 and 0.25 µL/mL for fine 

and coarse emulsions respectively (Table 5.3c). Other concentrations studied successfully 

inhibited bacterial growth. For L. monocytogenes, the MICs for fine and coarse emulsions were 

not found. The increase in the CM concentration in both fine and coarse emulsions made the 

inhibition more effective, but the effect was greater in coarse emulsion. For example, little 

growth was seen at the concentration range of 0.5-1 µL/mL in coarse emulsion but the range 

increased to 0.75-1 µL/mL in fine emulsion, indicating the coarse emulsions to be more 

effective. It should be pointed out that the fine emulsions that underwent the high-pressure 
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homogenizer had bigger, but not significant, droplets sizes than the coarse emulsions prepared 

with lab blender, which was unexpected. The results discussed above, however, indicated the 

smaller droplets had better antibacterial effect than larger droplet size. 

5.4.4.4 Antimicrobial inhibition by TLA mixture stabilized emulsions 

For TLA mixture stabilized emulsions, the MIC for E. coli (Fig 4g) was 0.25 µL/mL for 

both fine and coarse of emulsions (Table 5.3d). However, the fine emulsion inhibited bacterial 

growth better than the non-emulsified CM and coarse emulsion at the CM concentration of 0.125 

µL/mL: The bacterial growth in fine emulsion was much weaker than in coarse emulsion, as the 

overall absorbance was much lower throughout the entire incubation period. This growth 

phenomenon was also shown by L. monocytogenes and the MIC was 0.25 µL/mL for both coarse 

and fine emulsions. It was very obvious that the fine emulsion had much better effect than coarse 

emulsion, because the bacteria only grew to a small extent from 6.5 to 20 h and was inhibited in 

the fine emulsions, whereas they grew starting at 13.5 h and continued until 48 h in the coarse 

emulsions. The smaller droplet size significantly improved the antibacterial effect in TLA 

mixture stabilized emulsions. The lauric arginate is a food grade cationic surfactant known to 

have antimicrobial activity against a wide range of bacteria (Chang, McLandsborough, & 

McClements, 2015); unlike surfactin whose effect was not influenced by droplet size, the 

decreased droplet size in the TLA mixture stabilized emulsion increased the inhibition effect. 

From the discussion above on antimicrobial activity of emulsion droplets and EO itself, 

our results revealed that the incorporation of CM as emulsion did not lower MIC of CM against 

E. coli and resulted in increased MIC against L. monocytogenes. Similar findings were reported 

in some other studies that creating emulsions did not lower the MIC (Burt & Reinders, 2003; 

Xue, Davidson, & Zhong, 2017). However, at the EO concentrations that were lower than MIC, 
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the emulsion suppressed the growth of E. coli better compared to the non-emulsified EO, which 

was also found in other studies (S. Li, 2011; Xue, Davidson, & Zhong, 2017). This indicated that 

the emulsification assisted the essential oils to disperse in the bacterial broth and improve their 

efficacy at some concentrations. We also found that for the biosurfactant that possess 

antimicrobial property (surfactin), the emulsion droplet size did not affect the biosurfactant’ 

antibacterial property. It is possible that surfactin has caused damage to the bacteria before CM 

can reach the bacteria, as surfactin molecules exist on the surface of the droplets that may access 

bacteria easier than the oil phase where CM is located in. For other three emulsifiers, regardless 

of their own antimicrobial property, the decrease of the droplet sizes increased the antibacterial 

property; this can be explained by the fact that CM in smaller droplets emulsions have larger 

surface areas that it had more access to bacteria to achieve the inhibition effect.  

5.5 Conclusions  

This study reports the stabilizing functions of four emulsifiers and antimicrobial effect of 

their emulsions against two common foodborne pathogens. Surfactin and TLA mixture had the 

best stabilizing functions under all temperatures, due to their relatively bigger molecules that 

provide effective steric hindrance; the surfactin-coated droplets also have electric repulsion that 

kept the droplet from coalescence. For the emulsions stabilized with FA-glu and lecithin, they 

were not stable at 25 and 37C, and experienced substantial coalescence. The bacterial growth 

curves revealed that encapsulation of CM into emulsion did not lower the MIC, but emulsion 

improved the efficacy of CM when the concentrations were lower than MIC. Except for 

surfactin, the size of emulsion droplet was an important factor influencing the inhibition effect. 

Due to the good antibacterial property of surfactin itself, the decrease in the droplet sizes did not 

further improve the inhibition effect of its emulsions.  
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Fig 5.1 Surfactin (a) and fatty acyl glutamic acid (b) produced by Bacillus subtilis (Reznik 2010) 
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Figure 5.2 Emulsions stabilized by surfactin (1), FA-glu (2), lecithin (3), Tween&lauric arginate 

(4), and control without any emulsifiers (5) at 4°C (a), room temperature (b) and 37 °C (c) on 

24th day 
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 Table 5.1a Type × Day × Temperature interaction for Z-average values (nm) 

  Surfactin FA-glu Lecithin TLA mixture 

  

T1 (4 

°C) 

T2 

(25°C) T3 (37°C) 

T1 (4 

°C) 

T2 

(25°C) T3 (37°C) T1 (4 °C) 

T2 

(25°C) T3 (37°C) 

T1 (4 

°C) 

T2 

(25°C) T3 (37°C) 

D1 469A 733A 621A 607B 780B 736B 2252ABC 2438AB 2013BC 712A 815.65A 925A 

D13 627A 588A 528A 561B 720B 677B 2423AB 2525A 1958BC 619A 808A 580A 

D24 559A 605A 631A 566B 555B 560B 2359ABC 1917C 1228D 918A 620A 839A 

D38 551A 559A 597A 520B 528B 1341A       697A 913A 571A 

Note: the upper case indicated significant difference (P<0.05) for combinations of Day and Temperature for one single emulsifier 

 

 

 

 

Table 5.1b Type × Concentration × Temperature interaction for Z-average values (nm) 

  Surfactin FA-glu Lecithin TLA mixture 

  

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

C1 (0.5%) 548A 759A 588A 666AB 650AB 903A 2689A 2638A 1810B 711A 844A 807A 

C2 (1%) 554A 484A 600A 461B 641AB 754AB 1959B 1906B 1614B 762A 734A 651A 

Note: the upper case indicated significant difference (P<0.05) for combinations of Concentration and Temperature for one single emulsifier 

 

Table 5.1c Type × Pressure × Temperature interaction for Z-average values (nm) 

  Surfactin FA-glu Lecithin TLA mixture 

  T1 (4 °C) 

T2 

(25°C) 

T3 

(37°C) 

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

T1 (4 

°C) 

T2 

(25°C) 

T3 

(37°C) 

P1 (9000PSI) 572A 641A 690A 589AB 638AB 769AB 2359A 2382A 1466C 790A 870A 728A 

P2 

(18000PSI) 530A 601A 499A 537B 654AB 888A 2289AB 2163AB 1958B 684A 709A 730A 

Note: the upper case indicated significance difference (P<0.05) for combinations of Pressure and Temperature for one single emulsifier 
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Table 5.1 (continued) d Day 46 Emulsion droplet size (D[4,3], µm) 

  Surfactin FA-glu Lecithin TLA mixture 

  

T1 

(4°C) 

T2 

(25°C) T3 (37°C) T1 (4°C) 

T2 

(25°C) T3 (37°C) T1 (4°C) 

T2 

(25°C) T3 (37°C) T1 (4°C) 

T2 

(25°C) T3 (37°C) 

C1 (0.5%) 0.5A 0.5A 0.5A 0.58C 0.58C 395A 4B 13B 172A 0.57A 0.46A 0.44A 

C2 (1%) 0.7A 0.4A 0.4A 17C 0.64C 286B 1B 3B 66B 1.1A 0.69A 0.55A 

Note: the upper case indicated significance difference (P<0.05) for combinations of Concentration and Temperature for one single emulsifier 

 

 

 

 

Table 5.2 Type × Day × Temperature interaction for zeta potential  

  Surfactin FA-glu Lecithin Tween 

  T1 (4°C) T2 (25°C) T3 (37°C) T1 (4°C) T2 (25°C) T3 (37°C) T1 (4°C) T2 (25°C) T3 (37°C) T1 (4°C) T2 (25°C) T3 (37°C) 

D1 -51.4A -50.8A -52.5A -54.4D -52.8CD -54.4D -26.9A -26.7A -27.5AB -2.2AB -1.9A -1.7A 

D13 -51.2A -51.2A -51.4A -52.2BCD -54.3D -48.2A -27.9ABC -28.2ABC -29.1ABCD -2.5AB -2.7AB -3.1AB 

D24 -51.6A -51.9A -53.5A -54.0D -52.8CD -50.5ABC -29.7BCDE -30.5CDE -31.9E -2.7AB -3.6AB -4.3AB 

D38 -51.7A -52.2A -51.9A -50.8ABC -49.7AB -50.1ABC -29.0ABCD -30.5CDE -31.6DE -2.8AB -3.5AB -4.9AB 

 

Note: the different upper case letters indicated significant difference (P<0.05) of temperature and day combinations for a single emulsifier. 
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Table 5.3a ΔAb24 and description of growth situation for bacteria in surfactin stabilized emulsions 

  E.coli O157: H7 Listeiria monocytogenes 

Emulsifier 

Emulsion 

type 
Concentration 

ΔAb24 
Growth condition description 

ΔAb24 
Growth condition description 

Surfactin 

Fine 

emulsion 

0.125 0.59cd 

Started to grow at 4hr and 

kept growing slowly until 

48hr 

0.31a 

Started to grow at 11hr and 

growly slowly until 28, after 

which the absorbance remained 

unchanged 

0.25 -0.37op - -0.12hij 
Started to grow at 33 hr and kept 

growing slowly until 48hr 

0.5 -0.32nop - -0.046fghi - 

0.75 -0.13hijk - -0.027fghi - 

1 -0.082hi - -0.05fghi - 

Coarse 

emulsion 

0.125 0.51d 

Started to grow at 4hr and 

kept growing slowly until 

48hr 

0.25abc 

Started to grow after 14 hr and 

growing slowly until 36hr, after 

which the absorbance remained 

unchanged 

0.25 -0.43p - -0.38klm - 

0.5 -0.46p - -0.39lm - 

0.75 
-

0.26lmno 
- -0.22jk - 

1 
-

0.25kl,mo 
- -0.25jkl - 
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Table 5.3 (continued) b ΔAb24 and description of growth situation for bacteria in FA-glu stabilized emulsions 

  E.coli O157: H7 Listeiria monocytogenes 

Emulsifier 

Emulsion 

type 
Concentration 

ΔAb24 
Growth condition description 

ΔAb24 
Growth condition description 

FA-glu 

Fine 

emulsion 

0.125 0.10fg 

Started to grow at 4.5hr until 

38hr and absorbance 

decreased 

-0.37klm 

Started to grow at 5hr and 

reached at peak at 21hr after 

which absorbaced decreased a 

remained unchanged for the rest 

of incubation period 

0.25 -0.27mno - -0.12hij - 

0.5 -0.23jklmn - -0.12hij - 

0.75 
-

0.14hijklm 
- -0.11hij - 

FA-glu 1 -0.15ijklm - -0.12hij - 

Coarse 

emulsion 

0.125 0.29e 

Started to grow at 4hr and 

absorbance started to 

decrease at 31 hr 

0.14bcde 

Started to grow at 6.5hr and 

reached at peak at 21hr after 

which absorbaced decreased a 

remained unchanged for the rest 

of incubation period 

0.25 -0.10hij 

Started to grow at 7.5 and the 

absorbance remained for the 

rest of the incubation period 

-0.10hij 

Started to grow at 28.5hr and 

grew very slowly until the end 

of incubation period 

0.5 
-

0.26klmno 

Started to grow at 4 hr and 

continued until 37 hr, then 

absorbace decreased  

0.08defg 

Started to grow at 8 hr and 

growing slowy until 46hr and 

then absorbance decreased 

0.75 -0.35nop 

Started to grow at 3.5 hr and 

continued until 27hr, then 

absorbance decreased  

0.07degf 

Started to grow at 10hr and 

growing slowy until 40hr and 

then became flat 

1 0.19ef 
Started to grow at 11 hr and 

kept increasing until 48hr 
-0.47m 

Started to grow at 3.5 hr 

growing very slowly until 21hr, 

then absorbance decreased 
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Table 5.3 (continued) c ΔAb24 and description of growth situation for bacteria in lecithin stabilized emulsions 

      E.coli O157: H7 Listeiria monocytogenes 

Emulsifier 

Emulsion 

type 
Concentration 

ΔAb24 
Growth condition description 

ΔAb24 
Growth condition description 

Lecithin 

Fine 

emulsion 

0.125 1.08a 
Started to grow since 2hr and 

kept growing 
0.27abc 

Started to grow at 3hr and 

absornace increased until 20hr 

then became flat after that  

0.25 0.76b 
Started to grow since 6hr  

and kept growing 
0.28a 

Started to grow at 5hr and kept 

growing until 23hr, after which 

the absorbance kept unchanged 

0.5 -0.03ghi - 0.17abcd 
Started to grow at 8hr and kept 

growth until 48hr 

0.75 
-

0.013ghi 
- 0.013defghi 

Grew extremly slowly during 

the entire period 

1 
-

0.032ghi 
- 0.0082efghi 

Grew extremly slowly during 

the entire period 

Coarse 

emulsion 

0.125 0.71bc 

Started to grow since 4.5hr 

and kept growing. The 

absorbance was lower than 

these of NE lecithin 

emulsion at 0.125 uL/mL 

level 

0.15abcde 

Started to grow at 6.5hr, then 

increase until 28hr and became 

flat afterwards. The absorbance 

was lower than these of NE 

lecithin emulsion at 0.125 

uL/mL level 

0.25 
-

0.028ghi 
- 

-

0.0012efghi 
- 

0.5 
-

0.019ghi 
- 0.01defghi 

Grew extremly slowly during 

the entire period 

0.75 
-

0.006hg 
- 0.019defghi 

Grew extremly slowly during 

the entire period 

1 
-

0.014ghi 
- 0.02defgh 

Grew extremlyslowly during the 

entire period 
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Table 5.3 (continued) d ΔAb24 and description of growth situation for bacteria in Tween&lauric arginate stabilized 

emulsions 

      E.coli O157: H7 Listeiria monocytogenes 

Emulsifier 

Emulsion 

type 
Concentration 

ΔAb24 
Growth condition 

description ΔAb24 
Growth condition description 

Tween&lauric 

arginate 

Fine 

emulsion 

0.125 -0.077hi 

Started to grow at 15hr and 

grew very slowly until 

48hr 

-0.033fghi 

Started to grow at 6.5hr and 

the grew was very slow, 

reached the highest level at 20 

hr and kept flat then decreased  

0.25 -0.081 - -0.025fghi - 

0.5 -0.095hij - -0.029fghi - 

0.75 -0.092hij - -0.032fghi - 

1 -0.11hij - -0.058ghi - 

Coarse 

emulsion 

0.125 0.17ef 

Started to grow at 5hr and 

continued to reach a peak 

level at 9hr and decreased 

a little then remained flat. 

0.11cdef 
Started to grow since 13.5hr 

and kept grwoing slowly 

0.25 -0.23jklmn - -0.22jk - 

0.5 -0.14hijklm - -0.14ij - 

0.75 -0.13hijkl - -0.11hij - 

1 -0.14hijkl - -0.11hij - 
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CHAPTER 6. GENERAL CONCLUSION 

6.1 Summary 

The overall objectives of the study were to optimize the synthesis condition of some 

sugar-fatty acid esters and characterize functionalities and antimicrobial properties of these 

esters’ and some microbial fermentation based biosurfactants. The first study (Chapter 3) used 

lipase to catalyze esterification reaction between three types of fatty acids and glucose, purified 

the esters, and studied their emulsification properties. It was found that the highest conversion 

rate was achieved when the fatty acid and glucose ratio was 3:1. The in-house glucose fatty acid 

esters demonstrated emulsion-stabilizing effect, with longer-chain fatty acid esters having better 

stabilizing effect. For example, glucose palmitate had better emulsion stability and prevented 

coalescence better than glucose laurate. However, the stabilizing effect of the glucose esters were 

weaker than commercial sucrose esters, due to their lower solubility in water. The second study 

(Chapter 4) compared the antimicrobial performance of various biobased surfactants, including 

in-house glucose-fatty acid esters and lipopeptides (surfactin and fatty acyl glutamic acid (FA-

glu)) produced via microbial fermentation. All of them showed antimicrobial properties against 

common food borne pathogens E. coli O157:H7, Listeria monocytogenes and Salmonella 

Enteritidis. However, minimum inhibitory concentration (MIC) was not found for all of them. 

Among sugar-fatty acid esters, glucose laurate monoester had the best antimicrobial effect with 

the MIC at 6.5 mg/mL. In-house and commercial surfactin did not show good antimicrobial 

effect in this study. The minimum inhibitory concentration (MIC) for FA-glu was found to be 25 

mg/mL. At sub-MIC concentration of 5 mg/mL, it was able to disrupt bacterial cell membrane 

and cause cellular leakage. The third study (Chapter 5) investigated the stabilities and 

antimicrobial properties of nanoemulsions/emulsions contaiming cinnamaldehyde (CM) 
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stabilized with various emulsifiers, including surfactin and FA-glu. The surfactin and FA-glu 

stabilized nanoemulsions and emulsions containing CM did not lower the MIC of the pure CM 

against foodborne pathogens studied. However, at the sub-MIC concentrations, the 

nanoemulsions and coarse emulsions had better inhibition effect than pure CM. The droplet sizes 

had influence on the antimicrobial performance for some nanoemulsions/emulsions: smaller 

droplets had better inhibition effect than bigger droplets for FA-glu, lecithin, and Tween 80 and 

lauric ariginate mixture stabilized nanoemulsions/emulsions. However, the droplet size of 

emulsion did not affect antimicrobial performance of emulsions stabilized with surfactin. 

6.2 Recommendations for Future Work 

This research explored optimization of synthesis conditions for some sugar-fatty acid 

esters in terms of substrate ratios, and functionalities of these and other biobased surfactants. 

However, there still are knowledge gaps in synthesis and application of biobased surfactants that 

could be addressed in future research. For example, lipase catalyzed esterification reaction still 

faces challenges in terms of substrates and solvent selection to improve their miscibility and 

product yields. To expand the usage of microbial biosurfactants, safety studies of the 

biosurfactants in human food consumption and the producing microorganisms are needed. Also, 

improving the yield of the biosurfactants is one of the most important future study directions, 

which may be accomplished by genetic engineering and media manipulation. For antimicrobial 

usage of biosurfactants in foods, besides the interaction with artificial cell membrane studies, the 

influence of biosurfactant on physiological metabolism of microbes could be studied. Moreover, 

the possible mechanisms for antimicrobial activity of biosurfactant-stabilized emulsions and 

access of antimicrobial agents the mechanisms need to be investigated to see if emulsions 

prevent or promote the bacteria to access the antimicrobial agents.  
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